Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China.
Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China.
J Proteomics. 2024 Jan 6;290:105021. doi: 10.1016/j.jprot.2023.105021. Epub 2023 Oct 12.
In order to comprehend the molecular basis of growth, nutrient composition, and color pigmentation in oysters, comparative proteome and metabolome analyses of two selectively bred oyster strains with contrasting growth rate and shell color were used in this study. A total of 289 proteins and 224 metabolites were identified differentially expressed between the two strains. We identified a series of specifically enriched functional clusters implicated in protein biosynthesis (RPL4, MRPS7, and CARS), fatty acid metabolism (ACSL5, PEX3, ACOXI, CPTIA, FABP6, and HSD17B12), energy metabolism (FH, PPP1R7, CLAM2, and RGN), cell proliferation (MYB, NFYC, DOHH, TOP2a, SMARCA5, and SMARCC2), material transport (ABCB1, ABCB8, VPS16, and VPS33a), and pigmentation (RDH7, RDH13, Retsat, COX15, and Cyp3a9). Integrated proteome and metabolome analyses indicate that fast-growing strain utilize energy-efficient mechanisms of ATP generation while promoting protein and polyunsaturated fatty acid synthesis, activating the cell cycle to increase cell proliferation and thus promoting their biomass increase. These results uncovered molecular mechanisms underlying growth regulation, nutrition quality, and pigmentation and provided candidate biomarkers for molecular breeding in oysters. SIGNIFICANCE: Rapid growth has always been the primary breeding objective to increase the production profits of Pacific oyster (Crassostrea gigas), while favorable nutritional quality and beautiful color add commercial value. In recent years, proteomic and metabolomic techniques have been widely used in marine organisms, although these techniques are seldom utilized to study oyster growth and development. In this study, two C. gigas strains with contrasted phenotypes in growth and shell color provided an ideal model for unraveling the molecular basis of growth and nutrient composition through a comparison of the proteome and metabolome. Since proteins and metabolites are the critical undertakers and the end products of cellular regulatory processes, identifying the differentially expressed proteins and metabolites would allow for discovering biomarkers and pathways that were implicated in cell growth, proliferation, and other critical functions. This work provides valuable resources in assistance with molecular breeding of oyster strains with superior production traits of fast-growth and high-quality nutrient value.
为了理解牡蛎生长、营养成分和颜色色素的分子基础,本研究使用了两个生长速度和贝壳颜色不同的选择性培育牡蛎品系的比较蛋白质组和代谢组分析。在这两个品系之间,共鉴定出 289 种蛋白质和 224 种代谢物差异表达。我们鉴定了一系列与蛋白质生物合成(RPL4、MRPS7 和 CARS)、脂肪酸代谢(ACSL5、PEX3、ACOXI、CPTIA、FABP6 和 HSD17B12)、能量代谢(FH、PPP1R7、CLAM2、和 RGN)、细胞增殖(MYB、NFYC、DOHH、TOP2a、SMARCA5 和 SMARCC2)、物质运输(ABCB1、ABCB8、VPS16 和 VPS33a)和色素沉着(RDH7、RDH13、Retsat、COX15 和 Cyp3a9)相关的功能簇。蛋白质组和代谢组的综合分析表明,生长较快的品系利用高效的 ATP 生成机制,同时促进蛋白质和多不饱和脂肪酸的合成,激活细胞周期以增加细胞增殖,从而促进其生物量增加。这些结果揭示了生长调控、营养品质和色素沉着的分子机制,并为牡蛎的分子育种提供了候选生物标志物。意义:快速生长一直是增加太平洋牡蛎(Crassostrea gigas)生产利润的主要育种目标,而良好的营养品质和美丽的颜色则增加了商业价值。近年来,蛋白质组学和代谢组学技术已广泛应用于海洋生物中,尽管这些技术很少用于研究牡蛎的生长和发育。在本研究中,两个表型在生长和贝壳颜色上有明显差异的 C. gigas 品系为通过比较蛋白质组和代谢组来揭示生长和营养成分的分子基础提供了理想的模型。由于蛋白质和代谢物是细胞调控过程的关键执行者和最终产物,因此鉴定差异表达的蛋白质和代谢物可以发现与细胞生长、增殖和其他关键功能相关的生物标志物和途径。这项工作为具有快速生长和高营养价值等优良生产特性的牡蛎品系的分子育种提供了有价值的资源。