Christie S Thomas, Johnson Hayden R, Schrater Paul R
University of Minnesota, Minneapolis, MN, USA.
Open Mind (Camb). 2023 Sep 20;7:675-690. doi: 10.1162/opmi_a_00101. eCollection 2023.
Human response times conform to several regularities including the Hick-Hyman law, the power law of practice, speed-accuracy trade-offs, and the Stroop effect. Each of these has been thoroughly modeled in isolation, but no account describes these phenomena as predictions of a unified framework. We provide such a framework and show that the phenomena arise as decoding times in a simple neural rate code with an entropy stopping threshold. Whereas traditional information-theoretic encoding systems exploit task statistics to optimize encoding strategies, we move this optimization to the decoder, treating it as a Bayesian ideal observer that can track transmission statistics as prior information during decoding. Our approach allays prominent concerns that applying information-theoretic perspectives to modeling brain and behavior requires complex encoding schemes that are incommensurate with neural encoding.
人类反应时间符合多种规律,包括希克-海曼定律、练习幂律、速度-准确性权衡以及斯特鲁普效应。这些规律中的每一个都已被单独进行了深入建模,但尚无一种描述将这些现象作为统一框架的预测。我们提供了这样一个框架,并表明这些现象是作为具有熵停止阈值的简单神经速率编码中的解码时间而出现的。传统的信息论编码系统利用任务统计来优化编码策略,而我们将这种优化转移到解码器,将其视为一个贝叶斯理想观察者,该观察者可以在解码过程中将传输统计作为先验信息进行跟踪。我们的方法消除了一些突出的担忧,即应用信息论观点对大脑和行为进行建模需要与神经编码不相容的复杂编码方案。