文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于分析微生物组数据的数据预处理——一篇综述短文

Data pre-processing for analyzing microbiome data - A mini review.

作者信息

Zhou Ruwen, Ng Siu Kin, Sung Joseph Jao Yiu, Goh Wilson Wen Bin, Wong Sunny Hei

机构信息

Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore.

Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, 11 Jalan Tan Tock Seng, 308433, Singapore.

出版信息

Comput Struct Biotechnol J. 2023 Oct 4;21:4804-4815. doi: 10.1016/j.csbj.2023.10.001. eCollection 2023.


DOI:10.1016/j.csbj.2023.10.001
PMID:37841330
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10569954/
Abstract

The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.

摘要

由于人类微生物组对健康具有深远影响,它已成为一个新兴的研究前沿领域。高通量微生物组测序能够对微生物群落进行研究,但面临分析方面的挑战。特别是,缺乏专门用于提高数据质量的预处理方法阻碍了在下游分析之前有效减少偏差。本综述旨在通过全面概述与微生物组研究相关的预处理技术来填补这一空白。我们概述了微生物组数据分析的典型工作流程。所讨论的预处理方法包括质量过滤、批次效应校正、缺失值插补、归一化和数据转换。我们强调了每种技术的优点和局限性,以为研究人员提供实用指南,并确定需要进一步方法开发的领域。建立强大、标准化的预处理对于从微生物组研究中得出有效的生物学结论至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a2/10569954/c78e6ce559ad/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a2/10569954/d3c9b0766d27/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a2/10569954/c78e6ce559ad/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a2/10569954/d3c9b0766d27/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a2/10569954/c78e6ce559ad/gr2.jpg

相似文献

[1]
Data pre-processing for analyzing microbiome data - A mini review.

Comput Struct Biotechnol J. 2023-10-4

[2]
Overview of data preprocessing for machine learning applications in human microbiome research.

Front Microbiol. 2023-10-5

[3]
Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis.

Mol Oral Microbiol. 2023-10

[4]
Beware to ignore the rare: how imputing zero-values can improve the quality of 16S rRNA gene studies results.

BMC Bioinformatics. 2022-2-7

[5]
Transcriptomics in Toxicogenomics, Part II: Preprocessing and Differential Expression Analysis for High Quality Data.

Nanomaterials (Basel). 2020-5-8

[6]
Comparing preprocessing strategies for 3D-Gene microarray data of extracellular vesicle-derived miRNAs.

BMC Bioinformatics. 2024-6-20

[7]
Characterization and Demonstration of Mock Communities as Control Reagents for Accurate Human Microbiome Community Measurements.

Microbiol Spectr. 2022-4-27

[8]
Processing a 16S rRNA Sequencing Dataset with the Microbiome Helper Workflow.

Methods Mol Biol. 2018

[9]
Pretreating and normalizing metabolomics data for statistical analysis.

Genes Dis. 2023-7-7

[10]
Current Trends and Challenges of Microbiome Research in Bladder Cancer.

Curr Oncol Rep. 2024-3

引用本文的文献

[1]
Gut microbiota and tuberculosis.

Imeta. 2025-6-22

[2]
SpeSpeNet: an interactive and user-friendly tool to create and explore microbial correlation networks.

ISME Commun. 2025-2-24

[3]
[1]The human gut microbiota in IBD, characterizing hubs, the core microbiota and terminal nodes: a network-based approach.

BMC Microbiol. 2025-6-26

[4]
From variability to stability: Sensitivity of network properties in IBD human gut microbiome studies.

Comput Struct Biotechnol J. 2025-5-10

[5]
Comparative metagenomic analysis of the oral microbiome in COVID-19 patients and healthy individuals.

Sci Rep. 2025-3-25

[6]
Molecular epidemiology of spp. parasites and the faecal microbiome of Indiana bats (): a non-invasive, multiplex metabarcode survey of an endangered species.

Microb Genom. 2025-2

[7]
Review and revamp of compositional data transformation: A new framework combining proportion conversion and contrast transformation.

Comput Struct Biotechnol J. 2024-11-8

[8]
Comprehensive gut microbiota composition and microbial interactions among the three age groups.

PLoS One. 2024

[9]
Deep feature batch correction using ComBat for machine learning applications in computational pathology.

J Pathol Inform. 2024-9-12

本文引用的文献

[1]
Large-scale microbiome data integration enables robust biomarker identification.

Nat Comput Sci. 2022-5

[2]
Major data analysis errors invalidate cancer microbiome findings.

mBio. 2023-10-31

[3]
Unique Gut Microbiome Signatures among Adult Patients with Moderate to Severe Atopic Dermatitis in Southern Chinese.

Int J Mol Sci. 2023-8-16

[4]
How missing value imputation is confounded with batch effects and what you can do about it.

Drug Discov Today. 2023-9

[5]
DeepMicroGen: a generative adversarial network-based method for longitudinal microbiome data imputation.

Bioinformatics. 2023-5-4

[6]
Staphylococcal diversity in atopic dermatitis from an individual to a global scale.

Cell Host Microbe. 2023-4-12

[7]
Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4.

Nat Biotechnol. 2023-11

[8]
The importance of batch sensitization in missing value imputation.

Sci Rep. 2023-2-21

[9]
PLSDA-batch: a multivariate framework to correct for batch effects in microbiome data.

Brief Bioinform. 2023-3-19

[10]
The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults.

Clin Nutr. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索