Suppr超能文献

大规模微生物组数据整合有助于可靠地识别生物标志物。

Large-scale microbiome data integration enables robust biomarker identification.

作者信息

Xiao Liwen, Zhang Fengyi, Zhao Fangqing

机构信息

Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Comput Sci. 2022 May;2(5):307-316. doi: 10.1038/s43588-022-00247-8. Epub 2022 May 23.

Abstract

The close association between gut microbiota dysbiosis and human diseases is being increasingly recognized. However, contradictory results are frequently reported, as confounding effects exist. The lack of unbiased data integration methods is also impeding the discovery of disease-associated microbial biomarkers from different cohorts. Here we propose an algorithm, NetMoss, for assessing shifts of microbial network modules to identify robust biomarkers associated with various diseases. Compared to previous approaches, the NetMoss method shows better performance in removing batch effects. Through comprehensive evaluations on both simulated and real datasets, we demonstrate that NetMoss has great advantages in the identification of disease-related biomarkers. Based on analysis of pandisease microbiota studies, there is a high prevalence of multidisease-related bacteria in global populations. We believe that large-scale data integration will help in understanding the role of the microbiome from a more comprehensive perspective and that accurate biomarker identification will greatly promote microbiome-based medical diagnosis.

摘要

肠道微生物群失调与人类疾病之间的密切关联正日益受到认可。然而,由于存在混杂效应,相互矛盾的结果屡见不鲜。缺乏无偏数据整合方法也阻碍了从不同队列中发现与疾病相关的微生物生物标志物。在此,我们提出一种算法NetMoss,用于评估微生物网络模块的变化,以识别与各种疾病相关的稳健生物标志物。与先前的方法相比,NetMoss方法在消除批次效应方面表现更佳。通过对模拟数据集和真实数据集的综合评估,我们证明NetMoss在识别疾病相关生物标志物方面具有巨大优势。基于对大流行微生物群研究的分析,全球人群中多疾病相关细菌的患病率很高。我们相信,大规模数据整合将有助于从更全面的角度理解微生物组的作用,而准确的生物标志物识别将极大地促进基于微生物组的医学诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ea/10766547/3a8ffe11ec12/43588_2022_247_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验