Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.
Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
EMBO Rep. 2023 Nov 6;24(11):e56845. doi: 10.15252/embr.202356845. Epub 2023 Oct 16.
Fate determination of primordial germ cells (PGCs) is regulated in a multi-layered manner, involving signaling pathways, epigenetic mechanisms, and transcriptional control. Chemical modification of macromolecules, including epigenetics, is expected to be closely related with metabolic mechanisms but the detailed molecular machinery linking these two layers remains poorly understood. Here, we show that the hexosamine biosynthetic pathway controls PGC fate determination via O-linked β-N-acetylglucosamine (O-GlcNAc) modification. Consistent with this model, reduction of carbohydrate metabolism via a maternal ketogenic diet that decreases O-GlcNAcylation levels causes repression of PGC formation in vivo. Moreover, maternal ketogenic diet intake until mid-gestation affects the number of ovarian germ cells in newborn pups. Taken together, we show that nutritional and metabolic mechanisms play a previously unappreciated role in PGC fate determination.
原始生殖细胞(PGCs)的命运决定是多层次调节的,涉及信号通路、表观遗传机制和转录控制。包括表观遗传在内的大分子的化学修饰预计与代谢机制密切相关,但将这两个层次联系起来的详细分子机制仍知之甚少。在这里,我们表明己糖胺生物合成途径通过 O-连接的β-N-乙酰氨基葡萄糖(O-GlcNAc)修饰来控制 PGC 命运决定。与该模型一致,通过降低 O-GlcNAcylation 水平的母体生酮饮食来减少碳水化合物代谢会导致体内 PGC 形成受到抑制。此外,从中期妊娠到出生前摄入生酮饮食会影响新生幼仔卵巢生殖细胞的数量。总之,我们表明营养和代谢机制在 PGC 命运决定中起着以前未被认识到的作用。