Suppr超能文献

结合药代动力学和电生理模型用于药物致心律失常性的早期预测。

Combining pharmacokinetic and electrophysiological models for early prediction of drug-induced arrhythmogenicity.

作者信息

Llopis-Lorente Jordi, Baroudi Samuel, Koloskoff Kévin, Mora Maria Teresa, Basset Matthieu, Romero Lucía, Benito Sylvain, Dayan Frederic, Saiz Javier, Trenor Beatriz

机构信息

Centro de Investigación e Innovación en Bioingeniería (Ci(2)B), Universitat Politècnica de València, camino de Vera, s/n, 46022, Valencia, Spain.

ExactCure, 06000, Nice, France.

出版信息

Comput Methods Programs Biomed. 2023 Dec;242:107860. doi: 10.1016/j.cmpb.2023.107860. Epub 2023 Oct 11.

Abstract

BACKGROUND AND OBJECTIVE

In silico methods are gaining attention for predicting drug-induced Torsade de Pointes (TdP) in different stages of drug development. However, many computational models tended not to account for inter-individual response variability due to demographic covariates, such as sex, or physiologic covariates, such as renal function, which may be crucial when predicting TdP. This study aims to compare the effects of drugs in male and female populations with normal and impaired renal function using in silico methods.

METHODS

Pharmacokinetic models considering sex and renal function as covariates were implemented from data published in pharmacokinetic studies. Drug effects were simulated using an electrophysiologically calibrated population of cellular models of 300 males and 300 females. The population of models was built by modifying the endocardial action potential model published by O'Hara et al. (2011) according to the experimentally measured gene expression levels of 12 ion channels.

RESULTS

Fifteen pharmacokinetic models for CiPA drugs were implemented and validated in this study. Eight pharmacokinetic models included the effect of renal function and four the effect of sex. The mean difference in action potential duration (APD) between male and female populations was 24.9 ms (p<0.05). Our simulations indicated that women with impaired renal function were particularly susceptible to drug-induced arrhythmias, whereas healthy men were less prone to TdP. Differences between patient groups were more pronounced for high TdP-risk drugs. The proposed in silico tool also revealed that individuals with impaired renal function, electrophysiologically simulated with hyperkalemia (extracellular potassium concentration [K] = 7 mM) exhibited less pronounced APD prolongation than individuals with normal potassium levels. The pharmacokinetic/electrophysiological framework was used to determine the maximum safe dose of dofetilide in different patient groups. As a proof of concept, 3D simulations were also run for dofetilide obtaining QT prolongation in accordance with previously reported clinical values.

CONCLUSIONS

This study presents a novel methodology that combines pharmacokinetic and electrophysiological models to incorporate the effects of sex and renal function into in silico drug simulations and highlights their impact on TdP-risk assessment. Furthermore, it may also help inform maximum dose regimens that ensure TdP-related safety in a specific sub-population of patients.

摘要

背景与目的

计算机模拟方法在药物研发的不同阶段预测药物诱发的尖端扭转型室速(TdP)方面正受到越来越多的关注。然而,许多计算模型往往没有考虑因人口统计学协变量(如性别)或生理协变量(如肾功能)导致的个体间反应变异性,而这些因素在预测TdP时可能至关重要。本研究旨在使用计算机模拟方法比较药物在肾功能正常和受损的男性及女性人群中的作用效果。

方法

根据药代动力学研究中发表的数据,构建了将性别和肾功能作为协变量的药代动力学模型。使用300名男性和300名女性的细胞模型的电生理校准群体来模拟药物效应。通过根据12种离子通道的实验测量基因表达水平修改O'Hara等人(2011年)发表的心内膜动作电位模型,构建了模型群体。

结果

本研究实施并验证了15种用于CiPA药物的药代动力学模型。8种药代动力学模型纳入了肾功能的影响,4种纳入了性别的影响。男性和女性群体之间动作电位持续时间(APD)的平均差异为24.9毫秒(p<0.05)。我们的模拟表明,肾功能受损的女性特别容易发生药物诱发的心律失常,而健康男性发生TdP的倾向较小。对于高TdP风险药物,患者群体之间的差异更为明显。所提出的计算机模拟工具还显示,在高钾血症(细胞外钾浓度[K]=7 mM)电生理模拟下,肾功能受损的个体与血钾水平正常的个体相比,APD延长不那么明显。药代动力学/电生理框架用于确定不同患者群体中多非利特的最大安全剂量。作为概念验证,还对多非利特进行了3D模拟,获得了与先前报道的临床值一致的QT延长。

结论

本研究提出了一种新颖的方法,将药代动力学和电生理模型相结合,将性别和肾功能的影响纳入计算机模拟药物研究中,并突出了它们对TdP风险评估的影响。此外,它还可能有助于确定在特定患者亚群中确保与TdP相关安全性的最大剂量方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验