Dresselhaus-Marais Leora E, Kozioziemski Bernard, Holstad Theodor S, Ræder Trygve Magnus, Seaberg Matthew, Nam Daewoong, Kim Sangsoo, Breckling Sean, Choi Sungwook, Chollet Matthieu, Cook Philip K, Folsom Eric, Galtier Eric, Gonzalez Arnulfo, Gorkhover Tais, Guillet Serge, Haldrup Kristoffer, Howard Marylesa, Katagiri Kento, Kim Seonghan, Kim Sunam, Kim Sungwon, Kim Hyunjung, Knudsen Erik Bergbäck, Kuschel Stephan, Lee Hae Ja, Lin Chuanlong, McWilliams R Stewart, Nagler Bob, Nielsen Martin Meedom, Ozaki Norimasa, Pal Dayeeta, Pablo Pedro Ricardo, Saunders Alison M, Schoofs Frank, Sekine Toshimori, Simons Hugh, van Driel Tim, Wang Bihan, Yang Wenge, Yildirim Can, Poulsen Henning Friis, Eggert Jon H
Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA.
SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
Sci Rep. 2023 Oct 16;13(1):17573. doi: 10.1038/s41598-023-35526-5.
The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the [Formula: see text] photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.
固体材料中的结构、应变场和缺陷分布是众多应用中机械和物理性能的基础。许多现代微观结构显微镜工具能够表征绘制晶格畸变或变形所需的晶粒、畴和缺陷,但仅限于对(近)表面的研究。一般来说,这类工具无法以代表体行为的方式探测结构动力学。基于同步加速器X射线衍射的成像技术长期以来一直在绘制深层嵌入的结构元素,并且随着分辨率的提高,暗场X射线显微镜(DFXM)现在能够以所需的纳米分辨率绘制这些特征。然而,由于光源和光学器件的限制,这些技术仍然存在所需的积分时间问题。这项工作将DFXM扩展到X射线自由电子激光,展示了这些光源每脉冲可用的[公式:见原文]光子如何实现低至100飞秒分辨率的结构表征(比当前同步加速器图像快几个数量级)。我们引入了带有同步明场显微镜的XFEL DFXM装置,以探测同一体积内的密度变化。这项工作为我们在两个X射线自由电子激光装置上构建和测试的多模态超快高分辨率X射线显微镜提供了全面指南,并展示了用于研究相关可逆或不可逆晶格动力学的两种计时策略的初始数据。