Suppr超能文献

一种用于分析健康个体和嗅觉丧失患者口腔敏感性的有监督学习回归方法。

A supervised learning regression method for the analysis of oral sensitivity of healthy individuals and patients with chemosensory loss.

机构信息

Department of Biomedical Sciences, University of Cagliari, Monserrato, CA, Italy.

Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany.

出版信息

Sci Rep. 2023 Oct 16;13(1):17581. doi: 10.1038/s41598-023-44817-w.

Abstract

The gustatory, olfactory, and trigeminal systems are anatomically separated. However, they interact cognitively to give rise to oral perception, which can significantly affect health and quality of life. We built a Supervised Learning (SL) regression model that, exploiting participants' features, was capable of automatically analyzing with high precision the self-ratings of oral sensitivity of healthy participants and patients with chemosensory loss, determining the contribution of its components: gustatory, olfactory, and trigeminal. CatBoost regressor provided predicted values of the self-rated oral sensitivity close to experimental values. Patients showed lower predicted values of oral sensitivity, lower scores for measured taste, spiciness, astringency, and smell sensitivity, higher BMI, and lower levels of well-being. CatBoost regressor defined the impact of the single components of oral perception in the two groups. The trigeminal component was the most significant, though astringency and spiciness provided similar contributions in controls, while astringency was most important in patients. Taste was more important in controls while smell was the least important in both groups. Identifying the significance of the oral perception components and the differences between the two groups provide important information to allow for more targeted examinations supporting both patients and healthcare professionals in clinical practice.

摘要

味觉、嗅觉和三叉神经系统在解剖上是分开的。然而,它们在认知上相互作用,产生口腔感知,这会显著影响健康和生活质量。我们构建了一个监督学习(SL)回归模型,利用参与者的特征,能够自动高精度地分析健康参与者和嗅觉丧失患者的口腔敏感性自我评估,确定其组成部分:味觉、嗅觉和三叉神经的贡献。CatBoost 回归器提供的自我评估口腔敏感性预测值与实验值接近。患者的口腔敏感性预测值较低,味觉、辣度、涩味和嗅觉敏感度的评分较低,BMI 较高,幸福感水平较低。CatBoost 回归器定义了口腔感知的各个组成部分在两组中的影响。三叉神经成分最为显著,尽管在对照组中涩味和辣度的贡献相似,但在患者中涩味最为重要。在对照组中,味觉更为重要,而在两组中,嗅觉的重要性最低。确定口腔感知成分的重要性和两组之间的差异为临床实践中为患者和医疗保健专业人员提供更有针对性的检查提供了重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e11/10579260/b0c9dc44300e/41598_2023_44817_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验