Suppr超能文献

Bian:一种基于多层微流控的近红外成像组织模拟体。

BIAN: A Multilayer Microfluidic-Based Tissue-Mimicking Phantom for Near-Infrared Imaging.

机构信息

Department of Biomedical Engineering, University of Basel, Basel, Switzerland.

Biomedical Optics Research Laboratory, Department of Neonatology, University of Zurich, University Hospital Zurich, Zurich, Switzerland.

出版信息

Adv Exp Med Biol. 2023;1438:179-183. doi: 10.1007/978-3-031-42003-0_28.

Abstract

Near-infrared spectroscopy (NIRS) is a non-invasive optical method for monitoring cerebral oxygenation. Changes in regional blood flow and oxygenation due to neurovascular coupling are important biomarkers of neuronal activation. So far, there has been little research on multilayer tissue phantoms with tuneable blood flow, blood volume, and optical properties to simulate local changes in oxygenation at different depths. The aim of this study is to design, fabricate and characterize a complex dynamic phantom based on multilayer microfluidics with controllable blood flow, blood volume, and optical properties for testing NIRS instruments. We developed a phantom prototype with two microfluidic chips embedded at two depths inside a solid silicone phantom to mimic the vessels in the scalp and in the cortex. To simulate the oxygenation and perfusion of tissue, a solution with blood-like optical properties was sent into the microchannels by a pump with a programmable pressure controller. The pressure adjusted the volume of the microfluidic chips representing a distension of blood vessels. The optical changes in the superficial and deep layers were measured by a commercially available frequency domain NIRS instrument. The NIRS successfully detected the changes in light intensity elicited by the changes in the pressure input to the two layers. In conclusion, the microfluidics-based imaging phantom was successfully designed and fabricated and mimics brain functional activity. This technique has great potential for testing other optical devices, e.g., diffuse correlation spectroscopy, pulse oximetry, and optical coherence tomography.

摘要

近红外光谱(NIRS)是一种用于监测脑氧合的非侵入性光学方法。由于神经血管耦合,局部血流和氧合的变化是神经元激活的重要生物标志物。到目前为止,对于具有可调血流、血容量和光学特性的多层组织体模来模拟不同深度的局部氧合变化的研究甚少。本研究的目的是设计、制造和表征一种基于具有可控血流、血容量和光学特性的多层微流控的复杂动态体模,用于测试 NIRS 仪器。我们开发了一种体模原型,其中两个微流控芯片嵌入在固体硅酮体模的两个深度内,以模拟头皮和皮质中的血管。为了模拟组织的氧合和灌注,通过具有可编程压力控制器的蠕动泵将具有类似血液光学特性的溶液送入微通道。压力调节微流控芯片的体积,代表血管的膨胀。通过商业可用的频域 NIRS 仪器测量浅层和深层的光学变化。NIRS 成功地检测到施加到两个层的压力输入变化引起的光强度变化。总之,基于微流控的成像体模已成功设计和制造,并模拟了大脑功能活动。该技术对于测试其他光学设备(例如漫反射相关光谱、脉搏血氧饱和度和光相干断层扫描)具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验