Hamilton Corri D, Zaricor Beatriz, Dye Carolyn Jean, Dresserl Emma, Michaels Renee, Allen Caitilyn
Department of Plant Pathology, University of Wisconsin Madison, Madison, Wisconsin, USA.
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
Mol Plant Pathol. 2024 Jan;25(1):e13395. doi: 10.1111/mpp.13395. Epub 2023 Oct 17.
Plant-pathogenic Ralstonia strains cause bacterial wilt disease by colonizing xylem vessels of many crops, including tomato. Host resistance is the best control for bacterial wilt, but resistance mechanisms of the widely used Hawaii 7996 tomato breeding line (H7996) are unknown. Using growth in ex vivo xylem sap as a proxy for host xylem, we found that Ralstonia strain GMI1000 grows in sap from both healthy plants and Ralstonia-infected susceptible plants. However, sap from Ralstonia-infected H7996 plants inhibited Ralstonia growth, suggesting that in response to Ralstonia infection, resistant plants increase inhibitors in their xylem sap. Consistent with this, reciprocal grafting and defence gene expression experiments indicated that H7996 wilt resistance acts in both above- and belowground plant parts. Concerningly, H7996 resistance is broken by Ralstonia strain UW551 of the pandemic lineage that threatens highland tropical agriculture. Unlike other Ralstonia, UW551 grew well in sap from Ralstonia-infected H7996 plants. Moreover, other Ralstonia strains could grow in sap from H7996 plants previously infected by UW551. Thus, UW551 overcomes H7996 resistance in part by detoxifying inhibitors in xylem sap. Testing a panel of xylem sap compounds identified by metabolomics revealed that no single chemical differentially inhibits Ralstonia strains that cannot infect H7996. However, sap from Ralstonia-infected H7996 contained more phenolic compounds, which are known to be involved in plant antimicrobial defence. Culturing UW551 in this sap reduced total phenolic levels, indicating that the resistance-breaking Ralstonia strain degrades these chemical defences. Together, these results suggest that H7996 tomato wilt resistance depends in part on inducible phenolic compounds in xylem sap.
植物致病的雷尔氏菌菌株通过定殖于包括番茄在内的多种作物的木质部导管引发青枯病。寄主抗性是防治青枯病的最佳方法,但广泛使用的夏威夷7996番茄育种系(H7996)的抗性机制尚不清楚。我们以离体木质部汁液中的生长情况作为寄主木质部的替代指标,发现雷尔氏菌菌株GMI1000能在健康植物和感染雷尔氏菌的感病植物的汁液中生长。然而,来自感染雷尔氏菌的H7996植物的汁液抑制了雷尔氏菌的生长,这表明在应对雷尔氏菌感染时,抗性植物会增加其木质部汁液中的抑制剂。与此一致的是, reciprocal嫁接和防御基因表达实验表明,H7996的青枯抗性在地上和地下植物部分均起作用。令人担忧的是,H7996的抗性被威胁高地热带农业的大流行谱系的雷尔氏菌菌株UW551打破。与其他雷尔氏菌不同,UW551能在感染雷尔氏菌的H7996植物的汁液中良好生长。此外,其他雷尔氏菌菌株也能在先前被UW551感染的H7996植物的汁液中生长。因此,UW551部分通过解毒木质部汁液中的抑制剂来克服H7996的抗性。对代谢组学鉴定出的一组木质部汁液化合物进行测试发现,没有单一化学物质能差异抑制不能感染H7996的雷尔氏菌菌株。然而,来自感染雷尔氏菌的H7996的汁液含有更多酚类化合物,已知这些酚类化合物参与植物抗菌防御。在这种汁液中培养UW551会降低总酚水平,表明打破抗性的雷尔氏菌菌株会降解这些化学防御物质。总之,这些结果表明H7996番茄的青枯抗性部分取决于木质部汁液中可诱导的酚类化合物。