Suppr超能文献

生物医学中解决人工智能公平性和偏见问题的最新方法综述。

A survey of recent methods for addressing AI fairness and bias in biomedicine.

机构信息

National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Computer Science, University of Maryland, College Park, USA.

Department of Population Health Sciences, Weill Cornell Medicine, NY, USA.

出版信息

J Biomed Inform. 2024 Jun;154:104646. doi: 10.1016/j.jbi.2024.104646. Epub 2024 Apr 25.

Abstract

OBJECTIVES

Artificial intelligence (AI) systems have the potential to revolutionize clinical practices, including improving diagnostic accuracy and surgical decision-making, while also reducing costs and manpower. However, it is important to recognize that these systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender. Such biases can occur before, during, or after the development of AI models, making it critical to understand and address potential biases to enable the accurate and reliable application of AI models in clinical settings. To mitigate bias concerns during model development, we surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV). Then we discussed the methods, such as data perturbation and adversarial learning, that have been applied in the biomedical domain to address bias.

METHODS

We performed our literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords. We then filtered the result of 10,041 articles automatically with loose constraints, and manually inspected the abstracts of the remaining 890 articles to identify the 55 articles included in this review. Additional articles in the references are also included in this review. We discuss each method and compare its strengths and weaknesses. Finally, we review other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.

RESULTS

The bias of AIs in biomedicine can originate from multiple sources such as insufficient data, sampling bias and the use of health-irrelevant features or race-adjusted algorithms. Existing debiasing methods that focus on algorithms can be categorized into distributional or algorithmic. Distributional methods include data augmentation, data perturbation, data reweighting methods, and federated learning. Algorithmic approaches include unsupervised representation learning, adversarial learning, disentangled representation learning, loss-based methods and causality-based methods.

摘要

目的

人工智能(AI)系统有可能彻底改变临床实践,包括提高诊断准确性和手术决策能力,同时降低成本和人力。然而,重要的是要认识到这些系统可能会延续社会不平等或表现出偏见,例如基于种族或性别。这些偏见可能在 AI 模型开发之前、期间或之后发生,因此理解和解决潜在偏见对于在临床环境中准确可靠地应用 AI 模型至关重要。为了减轻模型开发过程中的偏见问题,我们调查了生物医学自然语言处理(NLP)或计算机视觉(CV)领域最近关于不同去偏方法的出版物。然后,我们讨论了已在生物医学领域应用的方法,例如数据扰动和对抗学习,以解决偏见问题。

方法

我们使用多个关键词组合在 PubMed、ACM 数字图书馆和 IEEE Xplore 上进行文献检索,检索了 2018 年 1 月至 2023 年 12 月期间发表的相关文章。然后,我们使用宽松的约束自动过滤了 10041 篇文章的结果,手动检查了其余 890 篇文章的摘要,以确定本综述中包含的 55 篇文章。参考文献中的其他文章也包含在本综述中。我们讨论了每种方法,并比较了其优缺点。最后,我们综述了来自一般领域的其他潜在方法,这些方法可应用于生物医学领域以解决偏见问题并提高公平性。

结果

生物医学中 AI 的偏见可能源于多个来源,例如数据不足、抽样偏差以及使用与健康无关的特征或经过种族调整的算法。侧重于算法的现有去偏方法可分为分布方法和算法方法。分布方法包括数据增强、数据扰动、数据重新加权方法和联邦学习。算法方法包括无监督表示学习、对抗学习、解缠表示学习、基于损失的方法和基于因果关系的方法。

相似文献

1
A survey of recent methods for addressing AI fairness and bias in biomedicine.
J Biomed Inform. 2024 Jun;154:104646. doi: 10.1016/j.jbi.2024.104646. Epub 2024 Apr 25.
3
A roadmap to artificial intelligence (AI): Methods for designing and building AI ready data to promote fairness.
J Biomed Inform. 2024 Jun;154:104654. doi: 10.1016/j.jbi.2024.104654. Epub 2024 May 11.
4
Bias Mitigation in Primary Health Care Artificial Intelligence Models: Scoping Review.
J Med Internet Res. 2025 Jan 7;27:e60269. doi: 10.2196/60269.
7
A scoping review of fair machine learning techniques when using real-world data.
J Biomed Inform. 2024 Mar;151:104622. doi: 10.1016/j.jbi.2024.104622. Epub 2024 Mar 6.
8
Artificial Intelligence Applications to Measure Food and Nutrient Intakes: Scoping Review.
J Med Internet Res. 2024 Nov 28;26:e54557. doi: 10.2196/54557.
9
Recommendations to promote fairness and inclusion in biomedical AI research and clinical use.
J Biomed Inform. 2024 Sep;157:104693. doi: 10.1016/j.jbi.2024.104693. Epub 2024 Jul 15.
10
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):92-105. doi: 10.1016/j.ogla.2024.08.004. Epub 2024 Aug 29.

引用本文的文献

5
Framework for bias evaluation in large language models in healthcare settings.
NPJ Digit Med. 2025 Jul 7;8(1):414. doi: 10.1038/s41746-025-01786-w.
6
7
Uncovering ethical biases in publicly available fetal ultrasound datasets.
NPJ Digit Med. 2025 Jun 13;8(1):355. doi: 10.1038/s41746-025-01739-3.
8
Predicting anorexia nervosa treatment efficacy: an explainable machine learning approach.
J Eat Disord. 2025 Jun 2;13(1):97. doi: 10.1186/s40337-025-01265-3.
9
Mitigating Bias in Machine Learning Models with Ethics-Based Initiatives: The Case of Sepsis.
Am J Bioeth. 2025 May 12:1-14. doi: 10.1080/15265161.2025.2497971.

本文引用的文献

1
A vision-language foundation model for the generation of realistic chest X-ray images.
Nat Biomed Eng. 2025 Apr;9(4):494-506. doi: 10.1038/s41551-024-01246-y. Epub 2024 Aug 26.
2
Video-Based Deep Learning for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients.
J Am Soc Echocardiogr. 2023 May;36(5):482-489. doi: 10.1016/j.echo.2023.01.015. Epub 2023 Feb 7.
3
Equitable precision medicine for type 2 diabetes.
Lancet Digit Health. 2022 Dec;4(12):e850. doi: 10.1016/S2589-7500(22)00217-5.
4
Bias reduction in representation of histopathology images using deep feature selection.
Sci Rep. 2022 Nov 21;12(1):19994. doi: 10.1038/s41598-022-24317-z.
6
Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
Ophthalmol Sci. 2021 Nov 16;1(4):100079. doi: 10.1016/j.xops.2021.100079. eCollection 2021 Dec.
7
Cardiac aging synthesis from cross-sectional data with conditional generative adversarial networks.
Front Cardiovasc Med. 2022 Sep 23;9:983091. doi: 10.3389/fcvm.2022.983091. eCollection 2022.
8
Fair and Privacy-Preserving Alzheimer's Disease Diagnosis Based on Spontaneous Speech Analysis via Federated Learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1362-1365. doi: 10.1109/EMBC48229.2022.9871204.
9
Algorithmic fairness in computational medicine.
EBioMedicine. 2022 Oct;84:104250. doi: 10.1016/j.ebiom.2022.104250. Epub 2022 Sep 6.
10
Subpopulation-specific machine learning prognosis for underrepresented patients with double prioritized bias correction.
Commun Med (Lond). 2022 Sep 1;2:111. doi: 10.1038/s43856-022-00165-w. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验