Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands.
Med Phys. 2023 Dec;50(12):7579-7593. doi: 10.1002/mp.16779. Epub 2023 Oct 17.
Cone beam computed tomography (CBCT) plays an important role in many medical fields nowadays. Unfortunately, the potential of this imaging modality is hampered by lower image quality compared to the conventional CT, and producing accurate reconstructions remains challenging. A lot of recent research has been directed towards reconstruction methods relying on deep learning, which have shown great promise for various imaging modalities. However, practical application of deep learning to CBCT reconstruction is complicated by several issues, such as exceedingly high memory costs of deep learning methods when working with fully 3D data. Additionally, deep learning methods proposed in the literature are often trained and evaluated only on data from a specific region of interest, thus raising concerns about possible lack of generalization to other regions.
In this work, we aim to address these limitations and propose LIRE: a learned invertible primal-dual iterative scheme for CBCT reconstruction.
LIRE is a learned invertible primal-dual iterative scheme for CBCT reconstruction, wherein we employ a U-Net architecture in each primal block and a residual convolutional neural network (CNN) architecture in each dual block. Memory requirements of the network are substantially reduced while preserving its expressive power through a combination of invertible residual primal-dual blocks and patch-wise computations inside each of the blocks during both forward and backward pass. These techniques enable us to train on data with isotropic 2 mm voxel spacing, clinically-relevant projection count and detector panel resolution on current hardware with 24 GB video random access memory (VRAM).
Two LIRE models for small and for large field-of-view (FoV) setting were trained and validated on a set of 260 + 22 thorax CT scans and tested using a set of 142 thorax CT scans plus an out-of-distribution dataset of 79 head and neck CT scans. For both settings, our method surpasses the classical methods and the deep learning baselines on both test sets. On the thorax CT set, our method achieves peak signal-to-noise ratio (PSNR) of 33.84 ± 2.28 for the small FoV setting and 35.14 ± 2.69 for the large FoV setting; U-Net baseline achieves PSNR of 33.08 ± 1.75 and 34.29 ± 2.71 respectively. On the head and neck CT set, our method achieves PSNR of 39.35 ± 1.75 for the small FoV setting and 41.21 ± 1.41 for the large FoV setting; U-Net baseline achieves PSNR of 33.08 ± 1.75 and 34.29 ± 2.71 respectively. Additionally, we demonstrate that LIRE can be finetuned to reconstruct high-resolution CBCT data with the same geometry but 1 mm voxel spacing and higher detector panel resolution, where it outperforms the U-Net baseline as well.
Learned invertible primal-dual schemes with additional memory optimizations can be trained to reconstruct CBCT volumes directly from the projection data with clinically-relevant geometry and resolution. Such methods can offer better reconstruction quality and generalization compared to classical deep learning baselines.
锥形束计算机断层扫描(CBCT)在当今许多医学领域中发挥着重要作用。不幸的是,与传统 CT 相比,这种成像方式的潜力受到较低的图像质量的限制,并且准确的重建仍然具有挑战性。最近的许多研究都集中在依赖深度学习的重建方法上,这些方法在各种成像方式中显示出了很大的潜力。然而,深度学习在 CBCT 重建中的实际应用受到几个问题的困扰,例如在处理完全 3D 数据时,深度学习方法的内存消耗极高。此外,文献中提出的深度学习方法通常仅在特定感兴趣区域的数据上进行训练和评估,因此人们担心可能缺乏对其他区域的泛化能力。
在这项工作中,我们旨在解决这些限制,并提出 LIRE:一种用于 CBCT 重建的学习可逆变分对偶迭代方案。
LIRE 是一种用于 CBCT 重建的学习可逆变分对偶迭代方案,其中我们在每个原始块中使用 U-Net 架构,在每个对偶块中使用残差卷积神经网络(CNN)架构。通过结合可逆变分对偶块和在每个块的正向和反向传递过程中每个块内的分块计算,在保持其表达能力的同时,大大降低了网络的内存需求。这些技术使我们能够在当前硬件上使用具有 24GB 视频随机存取存储器(VRAM)的 2 毫米各向同性体素间距、临床相关投影计数和探测器面板分辨率的数据进行训练。
针对小视野(FOV)和大视野(FOV)设置,我们训练和验证了两个 LIRE 模型,并在一组 260 个+22 个胸部 CT 扫描上进行了测试,并在一组 142 个胸部 CT 扫描和一个 79 个头部和颈部 CT 扫描的分布外数据集上进行了测试。对于这两种设置,我们的方法在两个测试集上都优于经典方法和深度学习基线。在胸部 CT 数据集上,我们的方法在小视野设置下达到 33.84 ± 2.28 的峰值信噪比(PSNR),在大视野设置下达到 35.14 ± 2.69 的 PSNR;U-Net 基线分别达到 33.08 ± 1.75 和 34.29 ± 2.71 的 PSNR。在头部和颈部 CT 数据集上,我们的方法在小视野设置下达到 39.35 ± 1.75 的 PSNR,在大视野设置下达到 41.21 ± 1.41 的 PSNR;U-Net 基线分别达到 33.08 ± 1.75 和 34.29 ± 2.71 的 PSNR。此外,我们证明了 LIRE 可以进行微调,以便使用相同的几何形状但具有 1 毫米体素间距和更高的探测器面板分辨率来重建高分辨率的 CBCT 数据,在这种情况下,它的表现优于 U-Net 基线。
具有额外内存优化的学习可逆变分对偶方案可以从具有临床相关几何形状和分辨率的投影数据中直接训练重建 CBCT 体积。与经典的深度学习基线相比,这种方法可以提供更好的重建质量和泛化能力。