Medical Physics Graduate Program, Duke University, Durham, NC, United States of America.
Department of Radiation Oncology, Duke University, Durham, NC, United States of America.
Phys Med Biol. 2021 Jul 30;66(15). doi: 10.1088/1361-6560/ac145b.
Although deep learning (DL) technique has been successfully used for computed tomography (CT) reconstruction, its implementation on cone-beam CT (CBCT) reconstruction is extremely challenging due to memory limitations. In this study, a novel DL technique is developed to resolve the memory issue, and its feasibility is demonstrated for CBCT reconstruction from sparsely sampled projection data.The novel geometry-guided deep learning (GDL) technique is composed of a GDL reconstruction module and a post-processing module. The GDL reconstruction module learns and performs projection-to-image domain transformation by replacing the traditional single fully connected layer with an array of small fully connected layers in the network architecture based on the projection geometry. The DL post-processing module further improves image quality after reconstruction. We demonstrated the feasibility and advantage of the model by comparing ground truth CBCT with CBCT images reconstructed using (1) GDL reconstruction module only, (2) GDL reconstruction module with DL post-processing module, (3) Feldkamp, Davis, and Kress (FDK) only, (4) FDK with DL post-processing module, (5) ray-tracing only, and (6) ray-tracing with DL post-processing module. The differences are quantified by peak-signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and root-mean-square error (RMSE).CBCT images reconstructed with GDL show improvements in quantitative scores of PSNR, SSIM, and RMSE. Reconstruction time per image for all reconstruction methods are comparable. Compared to current DL methods using large fully connected layers, the estimated memory requirement using GDL is four orders of magnitude less, making DL CBCT reconstruction feasible.With much lower memory requirement compared to other existing networks, the GDL technique is demonstrated to be the first DL technique that can rapidly and accurately reconstruct CBCT images from sparsely sampled data.
尽管深度学习(DL)技术已成功应用于计算机断层扫描(CT)重建,但由于内存限制,其在锥形束 CT(CBCT)重建中的应用极具挑战性。在这项研究中,开发了一种新的 DL 技术来解决内存问题,并证明其在从稀疏采样投影数据重建 CBCT 中的可行性。新的基于几何形状的深度学习(GDL)技术由 GDL 重建模块和后处理模块组成。GDL 重建模块通过在网络架构中基于投影几何形状用数组小全连接层代替传统的单个全连接层来学习和执行从投影到图像域的变换。DL 后处理模块进一步改善重建后的图像质量。通过将真实 CBCT 与使用(1)仅 GDL 重建模块、(2)具有 DL 后处理模块的 GDL 重建模块、(3)Feldkamp、Davis 和 Kress(FDK)仅、(4)具有 DL 后处理模块的 FDK、(5)仅射线追踪和(6)具有 DL 后处理模块的射线追踪重建的 CBCT 图像进行比较,证明了模型的可行性和优势。使用峰值信噪比(PSNR)、结构相似性指数度量(SSIM)和均方根误差(RMSE)来量化差异。使用 GDL 重建的 CBCT 图像在 PSNR、SSIM 和 RMSE 的定量评分方面均有所提高。所有重建方法的每张图像的重建时间相当。与使用大型全连接层的当前 DL 方法相比,GDL 估计的内存要求低四个数量级,使 DL CBCT 重建成为可能。与其他现有网络相比,GDL 技术的内存要求低得多,证明它是第一个可以从稀疏采样数据快速准确重建 CBCT 图像的 DL 技术。