Suppr超能文献

深度学习在基于多模态数据训练的 CT 超分辨率中的应用。

Deep learning in computed tomography super resolution using multi-modality data training.

机构信息

X-ray Products, Siemens Healthcare GmbH, Forchheim, Germany.

Faculty of Computer Science, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.

出版信息

Med Phys. 2024 Apr;51(4):2846-2860. doi: 10.1002/mp.16825. Epub 2023 Nov 16.

Abstract

BACKGROUND

One of the limitations in leveraging the potential of artificial intelligence in X-ray imaging is the limited availability of annotated training data. As X-ray and CT shares similar imaging physics, one could achieve cross-domain data sharing, so to generate labeled synthetic X-ray images from annotated CT volumes as digitally reconstructed radiographs (DRRs). To account for the lower resolution of CT and the CT-generated DRRs as compared to the real X-ray images, we propose the use of super-resolution (SR) techniques to enhance the CT resolution before DRR generation.

PURPOSE

As spatial resolution can be defined by the modulation transfer function kernel in CT physics, we propose to train a SR network using paired low-resolution (LR) and high-resolution (HR) images by varying the kernel's shape and cutoff frequency. This is different to previous deep learning-based SR techniques on RGB and medical images which focused on refining the sampling grid. Instead of generating LR images by bicubic interpolation, we aim to create realistic multi-detector CT (MDCT) like LR images from HR cone-beam CT (CBCT) scans.

METHODS

We propose and evaluate the use of a SR U-Net for the mapping between LR and HR CBCT image slices. We reconstructed paired LR and HR training volumes from the same CT scans with small in-plane sampling grid size of . We used the residual U-Net architecture to train two models. SRUN : trained with kernel-based LR images, and SRUN : trained with bicubic downsampled data as baseline. Both models are trained on one CBCT dataset (n = 13 391). The performance of both models was then evaluated on unseen kernel-based and interpolation-based LR CBCT images (n = 10 950), and also on MDCT images (n = 1392).

RESULTS

Five-fold cross validation and ablation study were performed to find the optimal hyperparameters. Both SRUN and SRUN models show significant improvements (p-value 0.05) in mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and structural similarity index measures (SSIMs) on unseen CBCT images. Also, the improvement percentages in MAE, PSNR, and SSIM by SRUN is larger than SRUN . For SRUN , MAE is reduced by 14%, and PSNR and SSIMs increased by 6 and 8%, respectively. To conclude, SRUN outperforms SRUN , which the former generates sharper images when tested with kernel-based LR CBCT images as well as cross-modality LR MDCT data.

CONCLUSIONS

Our proposed method showed better performance than the baseline interpolation approach on unseen LR CBCT. We showed that the frequency behavior of the used data is important for learning the SR features. Additionally, we showed cross-modality resolution improvements to LR MDCT images. Our approach is, therefore, a first and essential step in enabling realistic high spatial resolution CT-generated DRRs for deep learning training.

摘要

背景

在利用人工智能在 X 射线成像中的潜力方面存在的限制之一是注释训练数据的可用性有限。由于 X 射线和 CT 具有相似的成像物理特性,因此可以实现跨域数据共享,从而从标注的 CT 体数据生成模拟 X 射线图像作为数字重建射线照片(DRR)。为了考虑到 CT 生成的 DRR 与真实 X 射线图像相比分辨率较低的问题,我们提出使用超分辨率(SR)技术来增强 CT 分辨率,然后再生成 DRR。

目的

由于空间分辨率可以由 CT 物理中的调制传递函数核来定义,因此我们提出使用形状和截止频率变化的低分辨率(LR)和高分辨率(HR)图像对 SR 网络进行训练。这与以前基于 RGB 和医学图像的基于深度学习的 SR 技术不同,后者侧重于细化采样网格。我们的目标不是通过双三次插值生成 LR 图像,而是旨在从 HR 锥形束 CT(CBCT)扫描中创建逼真的多探测器 CT(MDCT)式 LR 图像。

方法

我们提出并评估了使用 SR U-Net 在 LR 和 HR CBCT 图像切片之间进行映射的方法。我们使用小面内采样网格尺寸为 的相同 CT 扫描重建配对的 LR 和 HR 训练体数据。我们使用残差 U-Net 架构来训练两个模型。SRUN :使用基于核的 LR 图像进行训练,SRUN :使用双三次下采样数据进行训练作为基线。两个模型都在一个 CBCT 数据集(n = 13 391)上进行训练。然后,在看不见的基于核的和基于插值的 LR CBCT 图像(n = 10 950)以及 MDCT 图像(n = 1392)上评估了这两个模型的性能。

结果

进行了五重交叉验证和消融研究,以找到最佳的超参数。SRUN 和 SRUN 模型在看不见的 CBCT 图像上的平均绝对误差(MAE)、峰值信噪比(PSNR)和结构相似性指数度量(SSIM)方面都有显著提高(p 值 < 0.05)。此外,SRUN 的 MAE、PSNR 和 SSIM 的改进百分比大于 SRUN 。对于 SRUN ,MAE 降低了 14%,PSNR 和 SSIM 分别提高了 6%和 8%。总之,SRUN 优于 SRUN ,前者在使用基于核的 LR CBCT 图像以及跨模态 LR MDCT 数据进行测试时生成更清晰的图像。

结论

与基线插值方法相比,我们提出的方法在看不见的 LR CBCT 上表现出更好的性能。我们表明,所使用数据的频率行为对于学习 SR 特征很重要。此外,我们还展示了对 LR MDCT 图像的跨模态分辨率改进。因此,我们的方法是为深度学习训练生成逼真的高空间分辨率 CT 生成的 DRR 而实现的第一步和基本步骤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验