Suppr超能文献

FLASH 氦离子扫描剂量率引擎的开发和基准测试。

Development and benchmarking of a dose rate engine for raster-scanned FLASH helium ions.

机构信息

Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.

Faculty of Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

出版信息

Med Phys. 2024 Mar;51(3):2251-2262. doi: 10.1002/mp.16793. Epub 2023 Oct 17.

Abstract

BACKGROUND

Radiotherapy with charged particles at high dose and ultra-high dose rate (uHDR) is a promising technique to further increase the therapeutic index of patient treatments. Dose rate is a key quantity to predict the so-called FLASH effect at uHDR settings. However, recent works introduced varying calculation models to report dose rate, which is susceptible to the delivery method, scanning path (in active beam delivery) and beam intensity.

PURPOSE

This work introduces an analytical dose rate calculation engine for raster scanned charged particle beams that is able to predict dose rate from the irradiation plan and recorded beam intensity. The importance of standardized dose rate calculation methods is explored here.

METHODS

Dose is obtained with an analytical pencil beam algorithm, using pre-calculated databases for integrated depth dose distributions and lateral penumbra. Dose rate is then calculated by combining dose information with the respective particle fluence (i.e., time information) using three dose-rate-calculation models (mean, instantaneous, and threshold-based). Dose rate predictions for all three models are compared to uHDR helium ion beam (145.7 MeV/u, range in water of approximatively 14.6 cm) measurements performed at the Heidelberg Ion Beam Therapy Center (HIT) with a diamond-detector prototype. Three scanning patterns (scanned or snake-like) and four field sizes are used to investigate the dose rate differences.

RESULTS

Dose rate measurements were in good agreement with in-silico generated distributions using the here introduced engine. Relative differences in dose rate were below 10% for varying depths in water, from 2.3 to 14.8 cm, as well as laterally in a near Bragg peak area. In the entrance channel of the helium ion beam, dose rates were predicted within 7% on average for varying irradiated field sizes and scanning patterns. Large differences in absolute dose rate values were observed for varying calculation methods. For raster-scanned irradiations, the deviation between mean and threshold-based dose rate at the investigated point was found to increase with the field size up to 63% for a 10 mm × 10 mm field, while no significant differences were observed for snake-like scanning paths.

CONCLUSIONS

This work introduces the first dose rate calculation engine benchmarked to instantaneous dose rate, enabling dose rate predictions for physical and biophysical experiments. Dose rate is greatly affected by varying particle fluence, scanning path, and calculation method, highlighting the need for a consensus among the FLASH community on how to calculate and report dose rate in the future. The here introduced engine could help provide the necessary details for the analysis of the sparing effect and uHDR conditions.

摘要

背景

利用高剂量和超高剂量率(uHDR)的带电粒子放射治疗是进一步提高患者治疗疗效指数的有前途的技术。剂量率是预测 uHDR 条件下所谓 FLASH 效应的关键数量。然而,最近的工作引入了不同的计算模型来报告剂量率,这容易受到输送方法、扫描路径(在主动束输送中)和束强度的影响。

目的

本工作为扫描的带电粒子束引入了一个解析剂量率计算引擎,该引擎能够根据照射计划和记录的束强度预测剂量率。本文探讨了标准化剂量率计算方法的重要性。

方法

使用预先计算的数据库获取积分深度剂量分布和横向半影的解析笔束算法来获取剂量。然后,通过将剂量信息与相应的粒子通量(即时间信息)结合使用三种剂量率计算模型(平均值、瞬时值和基于阈值的)来计算剂量率。将所有三种模型的剂量率预测与在海德堡离子束治疗中心(HIT)使用钻石探测器原型进行的超高剂量率氦离子束(145.7 MeV/u,在水中的射程约为 14.6 cm)测量进行比较。使用三种扫描模式(扫描或蛇形)和四种射野大小来研究剂量率差异。

结果

剂量率测量与使用这里引入的引擎生成的分布非常吻合。在不同的水深度(从 2.3 到 14.8 cm)以及在近布拉格峰区的横向位置,剂量率的相对差异低于 10%。在氦离子束的入口通道中,对于不同的照射野大小和扫描模式,平均剂量率的预测误差在 7%以内。对于不同的计算方法,观察到绝对剂量率值的差异很大。对于扫描照射,在所研究的点处,平均剂量率和基于阈值的剂量率之间的偏差随着射野尺寸的增加而增加,对于 10 mm×10 mm 的射野,偏差增加到 63%,而对于蛇形扫描路径,没有观察到显著差异。

结论

本工作引入了第一个与瞬时剂量率基准的剂量率计算引擎,能够为物理和生物物理实验进行剂量率预测。剂量率受不同粒子通量、扫描路径和计算方法的影响很大,突出了 FLASH 社区在未来如何计算和报告剂量率方面达成共识的必要性。这里引入的引擎可以为分析保护效应和 uHDR 条件提供必要的细节。

相似文献

1
Development and benchmarking of a dose rate engine for raster-scanned FLASH helium ions.
Med Phys. 2024 Mar;51(3):2251-2262. doi: 10.1002/mp.16793. Epub 2023 Oct 17.
2
Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay.
Med Phys. 2023 Apr;50(4):2510-2524. doi: 10.1002/mp.16178. Epub 2022 Dec 29.
3
Commissioning of Helium Ion Therapy and the First Patient Treatment With Active Beam Delivery.
Int J Radiat Oncol Biol Phys. 2023 Jul 15;116(4):935-948. doi: 10.1016/j.ijrobp.2023.01.015. Epub 2023 Jan 19.
6
FLASH dose rate calculation based on log files in proton pencil beam scanning therapy.
Med Phys. 2023 Nov;50(11):7154-7166. doi: 10.1002/mp.16575. Epub 2023 Jul 11.
7
A pencil beam algorithm for helium ion beam therapy.
Med Phys. 2012 Nov;39(11):6726-37. doi: 10.1118/1.4757578.
10
Development and validation of MonteRay, a fast Monte Carlo dose engine for carbon ion beam radiotherapy.
Med Phys. 2024 Feb;51(2):1433-1449. doi: 10.1002/mp.16754. Epub 2023 Sep 25.

引用本文的文献

1
FLASH radiotherapy at a crossroads: a bibliometric perspective on progress and challenges.
Discov Oncol. 2025 Aug 17;16(1):1570. doi: 10.1007/s12672-025-03400-7.

本文引用的文献

3
4
Treatment planning considerations for the development of FLASH proton therapy.
Radiother Oncol. 2022 Oct;175:222-230. doi: 10.1016/j.radonc.2022.08.003. Epub 2022 Aug 10.
5
Application of a novel diamond detector for commissioning of FLASH radiotherapy electron beams.
Med Phys. 2022 Aug;49(8):5513-5522. doi: 10.1002/mp.15782. Epub 2022 Jun 16.
6
Roadmap: helium ion therapy.
Phys Med Biol. 2022 Aug 5;67(15). doi: 10.1088/1361-6560/ac65d3.
7
Treatment planning for Flash radiotherapy: General aspects and applications to proton beams.
Med Phys. 2022 Apr;49(4):2861-2874. doi: 10.1002/mp.15579. Epub 2022 Mar 14.
8
In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH.
Radiother Oncol. 2022 Feb;167:109-115. doi: 10.1016/j.radonc.2021.12.022. Epub 2021 Dec 22.
9
10
FLASH Dose Rate Helium Ion Beams: First In Vitro Investigations.
Int J Radiat Oncol Biol Phys. 2021 Nov 15;111(4):1011-1022. doi: 10.1016/j.ijrobp.2021.07.1703. Epub 2021 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验