Granger Geoffroy, Bailly Myriam, Delahaye Hugo, Jimenez Cristian, Tiliouine Idris, Leventoux Yann, Orlianges Jean-Christophe, Couderc Vincent, Gérard Bruno, Becheker Rezki, Idlahcen Said, Godin Thomas, Hideur Ammar, Grisard Arnaud, Lallier Eric, Février Sébastien
Université de Limoges XLIM UMR CNRS 7252, 123 Av. A. Thomas, 87060, Limoges, France.
Thales Research & Technology, 1 Av. Augustin Fresnel, 91767, Palaiseau Cedex, France.
Light Sci Appl. 2023 Oct 18;12(1):252. doi: 10.1038/s41377-023-01299-9.
The mid-infrared spectral region opens up new possibilities for applications such as molecular spectroscopy with high spatial and frequency resolution. For example, the mid-infrared light provided by synchrotron sources has helped for early diagnosis of several pathologies. However, alternative light sources at the table-top scale would enable better access to these state-of-the-art characterizations, eventually speeding up research in biology and medicine. Mid-infrared supercontinuum generation in highly nonlinear waveguides pumped by compact fiber lasers represents an appealing alternative to synchrotrons. Here, we introduce orientation-patterned gallium arsenide waveguides as a new versatile platform for mid-infrared supercontinuum generation. Waveguides and fiber-based pump lasers are optimized in tandem to allow for the group velocities of the signal and the idler waves to match near the degeneracy point. This configuration exacerbates supercontinuum generation from 4 to 9 µm when waveguides are pumped at 2750 nm with few-nanojoule energy pulses. The brightness of the novel mid-infrared source exceeds that of the third-generation synchrotron source by a factor of 20. We also show that the nonlinear dynamics is strongly influenced by the choice of waveguide and laser parameters, thus offering an additional degree of freedom in tailoring the spectral profile of the generated light. Such an approach then opens new paths for high-brightness mid-infrared laser sources development for high-resolution spectroscopy and imaging. Furthermore, thanks to the excellent mechanical and thermal properties of the waveguide material, further power scaling seems feasible, allowing for the generation of watt-level ultra-broad frequency combs in the mid-infrared.
中红外光谱区域为诸如具有高空间和频率分辨率的分子光谱等应用开辟了新的可能性。例如,同步辐射源提供的中红外光有助于多种病症的早期诊断。然而,桌面规模的替代光源将使人们能够更好地进行这些先进的表征,最终加速生物学和医学研究。由紧凑型光纤激光器泵浦的高非线性波导中的中红外超连续谱产生是同步加速器的一种有吸引力的替代方案。在这里,我们介绍取向图案化砷化镓波导作为中红外超连续谱产生的一种新型通用平台。波导和基于光纤的泵浦激光器协同优化,以使信号波和闲频波的群速度在简并点附近匹配。当波导在2750 nm处以几纳焦耳的能量脉冲泵浦时,这种配置将超连续谱产生从4 µm扩展到9 µm。新型中红外光源的亮度比第三代同步辐射源高出20倍。我们还表明,非线性动力学受到波导和激光参数选择的强烈影响,从而在调整产生光的光谱轮廓方面提供了额外的自由度。这种方法为高分辨率光谱学和成像的高亮度中红外激光源开发开辟了新途径。此外,由于波导材料优异的机械和热性能,进一步提高功率似乎是可行的,这使得能够在中红外产生瓦级的超宽频率梳。