Suppr超能文献

基于特征提取与融合的卷积胶囊网络实现RGB-D显著目标检测

RGB-D salient object detection via convolutional capsule network based on feature extraction and integration.

作者信息

Xu Kun, Guo Jichang

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin, 300000, People's Republic of China.

Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China.

出版信息

Sci Rep. 2023 Oct 17;13(1):17652. doi: 10.1038/s41598-023-44698-z.

Abstract

Fully convolutional neural network has shown advantages in the salient object detection by using the RGB or RGB-D images. However, there is an object-part dilemma since most fully convolutional neural network inevitably leads to an incomplete segmentation of the salient object. Although the capsule network is capable of recognizing a complete object, it is highly computational demand and time consuming. In this paper, we propose a novel convolutional capsule network based on feature extraction and integration for dealing with the object-part relationship, with less computation demand. First and foremost, RGB features are extracted and integrated by using the VGG backbone and feature extraction module. Then, these features, integrating with depth images by using feature depth module, are upsampled progressively to produce a feature map. In the next step, the feature map is fed into the feature-integrated convolutional capsule network to explore the object-part relationship. The proposed capsule network extracts object-part information by using convolutional capsules with locally-connected routing and predicts the final salient map based on the deconvolutional capsules. Experimental results on four RGB-D benchmark datasets show that our proposed method outperforms 23 state-of-the-art algorithms.

摘要

全卷积神经网络在利用RGB或RGB-D图像进行显著目标检测方面已展现出优势。然而,存在一个目标-部分困境,因为大多数全卷积神经网络不可避免地会导致显著目标的分割不完整。尽管胶囊网络能够识别完整的目标,但其计算需求高且耗时。在本文中,我们提出了一种基于特征提取与整合的新型卷积胶囊网络,用于处理目标-部分关系,且计算需求较低。首先,利用VGG主干网络和特征提取模块提取并整合RGB特征。然后,通过特征深度模块将这些特征与深度图像相结合,并逐步上采样以生成特征图。下一步,将该特征图输入到特征整合卷积胶囊网络中,以探究目标-部分关系。所提出的胶囊网络通过使用具有局部连接路由的卷积胶囊来提取目标-部分信息,并基于反卷积胶囊预测最终的显著图。在四个RGB-D基准数据集上的实验结果表明,我们提出的方法优于23种当前最先进的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0581/10582015/f1507296a461/41598_2023_44698_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验