Suppr超能文献

大豆胞囊线虫中物种特异性 microRNA 的发现和靶标预测。

Species-specific microRNA discovery and target prediction in the soybean cyst nematode.

机构信息

Department of Systems and Computer Engineering, Carleton University, Ottawa, K1S 5B6, Canada.

Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, J3B 7B5, Canada.

出版信息

Sci Rep. 2023 Oct 17;13(1):17657. doi: 10.1038/s41598-023-44469-w.

Abstract

The soybean cyst nematode (SCN) is a devastating pathogen for economic and food security considerations. Although the SCN genome has recently been sequenced, the presence of any miRNA has not been systematically explored and reported. This paper describes the development of a species-specific SCN miRNA discovery pipeline and its application to the SCN genome. Experiments on well-documented model nematodes (Caenorhabditis elegans and Pristionchus pacificus) are used to tune the pipeline's hyperparameters and confirm its recall and precision. Application to the SCN genome identifies 3342 high-confidence putative SCN miRNA. Prediction specificity within SCN is confirmed by applying the pipeline to RNA hairpins from known exonic regions of the SCN genome (i.e., sequences known to not be miRNA). Prediction recall is confirmed by building a positive control set of SCN miRNA, based on a limited deep sequencing experiment. Interestingly, a number of novel miRNA are predicted to be encoded within the intronic regions of effector genes, known to be involved in SCN parasitism, suggesting that these miRNA may also be involved in the infection process or virulence. Beyond miRNA discovery, gene targets within SCN are predicted for all high-confidence novel miRNA using a miRNA:mRNA target prediction system. Lastly, cross-kingdom miRNA targeting is investigated, where putative soybean mRNA targets are identified for novel SCN miRNA. All predicted miRNA and gene targets are made available in appendix and through a Borealis DataVerse open repository ( https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/30DEXA ).

摘要

大豆胞囊线虫 (SCN) 是一种具有破坏性的病原体,对经济和食品安全都有影响。尽管 SCN 基因组最近已经被测序,但任何 miRNA 的存在都没有被系统地探索和报道。本文描述了一种针对特定物种的 SCN miRNA 发现管道的开发及其在 SCN 基因组中的应用。在有详细记录的模式线虫(秀丽隐杆线虫和太平洋真涡虫)上进行的实验用于调整管道的超参数,并确认其召回率和精度。将其应用于 SCN 基因组,鉴定出 3342 个高可信度的 SCN 潜在 miRNA。通过将该管道应用于 SCN 基因组中已知外显子区域的 RNA 发夹(即已知不是 miRNA 的序列),来确认 SCN 内的预测特异性。通过构建基于有限深度测序实验的 SCN miRNA 阳性对照集来确认预测的召回率。有趣的是,许多新的 miRNA 被预测编码在效应基因的内含子区域内,这些基因已知参与 SCN 寄生,这表明这些 miRNA 也可能参与感染过程或毒力。除了 miRNA 的发现,还使用 miRNA:mRNA 靶标预测系统预测了所有高可信度的新型 miRNA 在内的 SCN 中的靶基因。最后,研究了跨王国 miRNA 靶向性,为新型 SCN miRNA 鉴定出了大豆的 mRNA 靶标。所有预测的 miRNA 和基因靶标都可在附录中获得,并可通过 Borealis DataVerse 开放存储库(https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/30DEXA)获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e8b/10582106/56ae8142fd35/41598_2023_44469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验