Suppr超能文献

大豆胞囊线虫抗性数量性状位点改变了一种 γ-SNAP 蛋白的表达。

Soybean Cyst Nematode Resistance Quantitative Trait Locus Alters the Expression of a γ-SNAP Protein.

机构信息

University of Wisconsin-Madison, Department of Plant Pathology, Madison, WI, U.S.A.

University of Illinois Urbana-Champaign, Department of Crop Sciences, Urbana, IL, U.S.A.

出版信息

Mol Plant Microbe Interact. 2021 Dec;34(12):1433-1445. doi: 10.1094/MPMI-07-21-0163-R. Epub 2021 Dec 7.

Abstract

Soybean cyst nematode (SCN) is the most economically damaging pathogen of soybean and host resistance is a core management strategy. The SCN resistance quantitative trait locus , introgressed from the wild relative , provides intermediate resistance against nematode populations, including those with increased virulence on the heavily used resistance locus. was previously fine-mapped to a genome interval on chromosome 15. The present study determined that at , encoding a γ-SNAP, contributes to SCN resistance. CRISPR/Cas9-mediated disruption of the allele reduced SCN resistance in transgenic roots. There are no encoded amino acid polymorphisms between resistant and susceptible alleles. However, other -specific DNA polymorphisms in the promoter and gene body were identified, and we observed differing induction of γ-SNAP protein abundance at SCN infection sites between resistant and susceptible roots. We identified alternative RNA splice forms transcribed from the γ-SNAP gene and observed differential expression of the splice forms 2 days after SCN infection. Heterologous overexpression of γ-SNAPs in plant leaves caused moderate necrosis, suggesting that careful regulation of this protein is required for cellular homeostasis. Apparently, certain evolved quantitative SCN resistance through altered regulation of γ-SNAP. Previous work has demonstrated SCN resistance impacts of the soybean α-SNAP proteins encoded by () and . The present study shows that a different type of SNAP protein can also impact SCN resistance. Little is known about γ-SNAPs in any system, but the present work suggests a role for γ-SNAPs during susceptible responses to cyst nematodes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

摘要

大豆胞囊线虫(SCN)是大豆最具经济破坏性的病原体,而寄主抗性是核心管理策略。从野生近缘种中引入的 SCN 抗性数量性状位点提供了对线虫种群的中等抗性,包括那些对大量使用的抗性位点具有增加毒力的种群。先前已将其精细定位到 15 号染色体上的基因组区间。本研究确定 编码γ-SNAP 的 位于 ,有助于 SCN 抗性。CRISPR/Cas9 介导的 等位基因破坏降低了转基因根中的 SCN 抗性。抗性和敏感等位基因之间没有编码氨基酸多态性。然而,在 启动子和基因体中鉴定出了其他 -特异性 DNA 多态性,并且我们观察到抗性和敏感根之间在 SCN 感染部位 γ-SNAP 蛋白丰度的不同诱导。我们鉴定了来自 γ-SNAP 基因的替代 RNA 剪接形式,并观察到 SCN 感染后 2 天剪接形式的差异表达。γ-SNAP 在植物叶片中的异源过表达导致中度坏死,这表明需要对该蛋白质进行仔细调节以维持细胞内稳态。显然,某些 通过改变 γ-SNAP 的调节而进化出了定量的 SCN 抗性。以前的工作已经证明了由 编码的大豆 α-SNAP 蛋白()和 对 SCN 抗性的影响。本研究表明,不同类型的 SNAP 蛋白也可以影响 SCN 抗性。在任何系统中,关于 γ-SNAP 的了解甚少,但本工作表明 γ-SNAP 在对线虫的敏感反应中发挥作用。[公式:见文本]版权所有 © 2021 作者。这是一个在 CC BY 4.0 国际许可下分发的开放获取文章。

相似文献

1
Soybean Cyst Nematode Resistance Quantitative Trait Locus Alters the Expression of a γ-SNAP Protein.
Mol Plant Microbe Interact. 2021 Dec;34(12):1433-1445. doi: 10.1094/MPMI-07-21-0163-R. Epub 2021 Dec 7.
2
Disease resistance through impairment of α-SNAP-NSF interaction and vesicular trafficking by soybean Rhg1.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7375-E7382. doi: 10.1073/pnas.1610150113. Epub 2016 Nov 7.
3
Detection of rare nematode resistance Rhg1 haplotypes in Glycine soja and a novel Rhg1 α-SNAP.
Plant Genome. 2022 Mar;15(1):e20152. doi: 10.1002/tpg2.20152. Epub 2021 Oct 30.
4
An atypical N-ethylmaleimide sensitive factor enables the viability of nematode-resistant soybeans.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4512-E4521. doi: 10.1073/pnas.1717070115. Epub 2018 Apr 25.
5
t-SNAREs bind the Rhg1 α-SNAP and mediate soybean cyst nematode resistance.
Plant J. 2020 Oct;104(2):318-331. doi: 10.1111/tpj.14923. Epub 2020 Aug 6.
7
Resistance Gene Pyramiding and Rotation to Combat Widespread Soybean Cyst Nematode Virulence.
Plant Dis. 2021 Oct;105(10):3238-3243. doi: 10.1094/PDIS-12-20-2556-RE. Epub 2021 Nov 9.
9
Fine-mapping and characterization of qSCN18, a novel QTL controlling soybean cyst nematode resistance in PI 567516C.
Theor Appl Genet. 2021 Feb;134(2):621-631. doi: 10.1007/s00122-020-03718-6. Epub 2020 Nov 13.
10
Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean.
Science. 2012 Nov 30;338(6111):1206-9. doi: 10.1126/science.1228746. Epub 2012 Oct 11.

引用本文的文献

1
The AP2/ERF transcription factor GmTINY mediates ethylene regulation of Rhg1-conferred resistance against soybean cyst nematode.
Plant Commun. 2025 Jul 14;6(7):101378. doi: 10.1016/j.xplc.2025.101378. Epub 2025 May 19.
4
Advances in CRISPR/Cas9-based research related to soybean [ (Linn.) Merr] molecular breeding.
Front Plant Sci. 2023 Aug 30;14:1247707. doi: 10.3389/fpls.2023.1247707. eCollection 2023.
5
The Contributes to Resistance to Soybean Cyst Nematode Race 4 in .
Front Plant Sci. 2022 Jul 4;13:939763. doi: 10.3389/fpls.2022.939763. eCollection 2022.
7
Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20.
Plant J. 2022 Apr;110(1):114-128. doi: 10.1111/tpj.15658. Epub 2022 Feb 10.

本文引用的文献

1
Variability in Distribution and Virulence Phenotypes of Heterodera glycines in Missouri During 2005.
Plant Dis. 2007 Nov;91(11):1473-1476. doi: 10.1094/PDIS-91-11-1473.
3
Determination of Heterodera glycines Virulence Phenotypes Occurring in South Dakota.
Plant Dis. 2016 Nov;100(11):2281-2286. doi: 10.1094/PDIS-04-16-0572-RE. Epub 2016 Sep 8.
5
The plant-parasitic cyst nematode effector GLAND4 is a DNA-binding protein.
Mol Plant Pathol. 2018 Oct;19(10):2263-2276. doi: 10.1111/mpp.12697. Epub 2018 Jul 26.
6
An atypical N-ethylmaleimide sensitive factor enables the viability of nematode-resistant soybeans.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4512-E4521. doi: 10.1073/pnas.1717070115. Epub 2018 Apr 25.
7
Transcriptomic reprogramming in soybean seedlings under salt stress.
Plant Cell Environ. 2019 Jan;42(1):98-114. doi: 10.1111/pce.13186. Epub 2018 Jun 1.
8
CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants.
Mol Plant. 2017 Mar 6;10(3):530-532. doi: 10.1016/j.molp.2017.01.003. Epub 2017 Jan 13.
9
Disease resistance through impairment of α-SNAP-NSF interaction and vesicular trafficking by soybean Rhg1.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7375-E7382. doi: 10.1073/pnas.1610150113. Epub 2016 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验