University of Wisconsin-Madison, Department of Plant Pathology, Madison, WI, U.S.A.
University of Illinois Urbana-Champaign, Department of Crop Sciences, Urbana, IL, U.S.A.
Mol Plant Microbe Interact. 2021 Dec;34(12):1433-1445. doi: 10.1094/MPMI-07-21-0163-R. Epub 2021 Dec 7.
Soybean cyst nematode (SCN) is the most economically damaging pathogen of soybean and host resistance is a core management strategy. The SCN resistance quantitative trait locus , introgressed from the wild relative , provides intermediate resistance against nematode populations, including those with increased virulence on the heavily used resistance locus. was previously fine-mapped to a genome interval on chromosome 15. The present study determined that at , encoding a γ-SNAP, contributes to SCN resistance. CRISPR/Cas9-mediated disruption of the allele reduced SCN resistance in transgenic roots. There are no encoded amino acid polymorphisms between resistant and susceptible alleles. However, other -specific DNA polymorphisms in the promoter and gene body were identified, and we observed differing induction of γ-SNAP protein abundance at SCN infection sites between resistant and susceptible roots. We identified alternative RNA splice forms transcribed from the γ-SNAP gene and observed differential expression of the splice forms 2 days after SCN infection. Heterologous overexpression of γ-SNAPs in plant leaves caused moderate necrosis, suggesting that careful regulation of this protein is required for cellular homeostasis. Apparently, certain evolved quantitative SCN resistance through altered regulation of γ-SNAP. Previous work has demonstrated SCN resistance impacts of the soybean α-SNAP proteins encoded by () and . The present study shows that a different type of SNAP protein can also impact SCN resistance. Little is known about γ-SNAPs in any system, but the present work suggests a role for γ-SNAPs during susceptible responses to cyst nematodes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
大豆胞囊线虫(SCN)是大豆最具经济破坏性的病原体,而寄主抗性是核心管理策略。从野生近缘种中引入的 SCN 抗性数量性状位点提供了对线虫种群的中等抗性,包括那些对大量使用的抗性位点具有增加毒力的种群。先前已将其精细定位到 15 号染色体上的基因组区间。本研究确定 编码γ-SNAP 的 位于 ,有助于 SCN 抗性。CRISPR/Cas9 介导的 等位基因破坏降低了转基因根中的 SCN 抗性。抗性和敏感等位基因之间没有编码氨基酸多态性。然而,在 启动子和基因体中鉴定出了其他 -特异性 DNA 多态性,并且我们观察到抗性和敏感根之间在 SCN 感染部位 γ-SNAP 蛋白丰度的不同诱导。我们鉴定了来自 γ-SNAP 基因的替代 RNA 剪接形式,并观察到 SCN 感染后 2 天剪接形式的差异表达。γ-SNAP 在植物叶片中的异源过表达导致中度坏死,这表明需要对该蛋白质进行仔细调节以维持细胞内稳态。显然,某些 通过改变 γ-SNAP 的调节而进化出了定量的 SCN 抗性。以前的工作已经证明了由 编码的大豆 α-SNAP 蛋白()和 对 SCN 抗性的影响。本研究表明,不同类型的 SNAP 蛋白也可以影响 SCN 抗性。在任何系统中,关于 γ-SNAP 的了解甚少,但本工作表明 γ-SNAP 在对线虫的敏感反应中发挥作用。[公式:见文本]版权所有 © 2021 作者。这是一个在 CC BY 4.0 国际许可下分发的开放获取文章。