Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada.
Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
Leukemia. 2023 Dec;37(12):2426-2435. doi: 10.1038/s41375-023-02062-0. Epub 2023 Oct 17.
Imatinib Mesylate (imatinib) was once hailed as the magic bullet for chronic myeloid leukemia (CML) and remains a front-line therapy for CML to this day alongside other tyrosine kinase inhibitors (TKIs). However, TKI treatments are rarely curative and patients are often required to receive life-long treatment or otherwise risk relapse. Thus, there is a growing interest in identifying biomarkers in patients which can predict TKI response upon diagnosis. In this study, we analyze clinical data and differentially expressed miRNAs in CD34 CML cells from 80 patients at diagnosis who were later classified as imatinib-responders or imatinib-nonresponders. A Cox Proportional Hazard (CoxPH) analysis identified 16 miRNAs that were associated with imatinib nonresponse and differentially expressed in these patients. We also trained a machine learning model with different combinations of the 16 miRNAs with and without clinical parameters and identified a panel with high predictive performance based on area-under-curve values of receiver-operating-characteristic and precision-recall curves. Interestingly, the multivariable panel consisting of both miRNAs and clinical features performed better than either miRNA or clinical panels alone. Thus, our findings may inform future studies on predictive biomarkers and serve as a tool to develop more optimized treatment plans for CML patients in the clinic.
甲磺酸伊马替尼(imatinib)曾被誉为慢性髓系白血病(CML)的“灵丹妙药”,至今仍是 CML 的一线治疗方法,与其他酪氨酸激酶抑制剂(TKI)一起使用。然而,TKI 治疗很少能根治,患者通常需要接受终身治疗,否则有复发的风险。因此,人们越来越关注在诊断时识别患者中的生物标志物,这些标志物可以预测 TKI 反应。在这项研究中,我们分析了 80 例初诊 CML 患者的 CD34 细胞的临床数据和差异表达的 miRNAs,这些患者后来被分为伊马替尼反应者和伊马替尼无反应者。Cox 比例风险(CoxPH)分析确定了 16 个与伊马替尼无反应相关且在这些患者中差异表达的 miRNAs。我们还使用包含和不包含临床参数的 16 个 miRNAs 的不同组合训练了机器学习模型,并根据接收者操作特征曲线和精度召回曲线的曲线下面积值确定了一个具有高预测性能的面板。有趣的是,由 miRNAs 和临床特征组成的多变量面板的表现优于 miRNA 或临床面板单独使用的表现。因此,我们的发现可能为未来的预测生物标志物研究提供信息,并为临床中 CML 患者制定更优化的治疗计划提供工具。