Suppr超能文献

基于计算机断层扫描的预测模型,用于识别患有高概率非肌肉浸润性膀胱癌的患者。

Computed tomography-based prediction model for identifying patients with high probability of non-muscle-invasive bladder cancer.

机构信息

Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

Abdom Radiol (NY). 2024 Jan;49(1):163-172. doi: 10.1007/s00261-023-04069-8. Epub 2023 Oct 17.

Abstract

PURPOSE

To investigate computed tomography (CT)-based prediction model for identifying patients with high probability of non-muscle-invasive bladder cancer (NMIBC).

METHODS

This retrospective study evaluated 147 consecutive patients who underwent contrast-enhanced CT and surgery for bladder cancer. Using corticomedullary-to-portal venous phase images, two independent readers analyzed bladder muscle invasion, tumor stalk, and tumor size, respectively. Three-point scale (i.e., from 0 to 2) was applied for assessing the suspicion degree of muscle invasion or tumor stalk. A multivariate prediction model using the CT parameters for achieving high positive predictive value (PPV) for NMIBC was investigated. The PPVs from raw data or 1000 bootstrap resampling and inter-reader agreement using Gwet's AC1 were analyzed, respectively.

RESULTS

Proportion of patients with NMIBC was 81.0% (119/147). The CT criteria of the prediction model were as follows: (a) muscle invasion score < 2; (b) tumor stalk score > 0; and (c) tumor size < 3 cm. From the raw data, PPV of the model for NMIBC was 92.7% (51/55; 95% confidence interval [CI] 82.4-98.0) in reader 1 and 93.3% (42/45; 95% CI 81.7-98.6) in reader 2. From the bootstrap data, PPV was 92.8% (95% CI 85.2-98.3) in reader 1 and 93.4% (95% CI 84.9-99.9) in reader 2. The model's AC1 was 0.753 (95% CI 0.647-0.859).

CONCLUSION

The current CT-derived prediction model demonstrated high PPV for identifying patients with NMIBC. Depending on CT findings, approximately 30% of patients with bladder cancer may have a low need for additional MRI for interpreting vesical imaging-reporting and data system.

摘要

目的

研究基于计算机断层扫描(CT)的预测模型,以识别膀胱癌(BC)患者中具有非肌肉浸润性膀胱癌(NMIBC)高概率的患者。

方法

本回顾性研究评估了 147 例连续接受增强 CT 和膀胱癌手术的患者。使用皮质-髓质至门静脉期图像,两名独立的读者分别分析了膀胱肌肉侵犯、肿瘤蒂和肿瘤大小。采用三点评分(0-2 分)评估肌肉侵犯或肿瘤蒂的可疑程度。研究了一种使用 CT 参数建立具有高阳性预测值(PPV)的 NMIBC 的多变量预测模型。分析了原始数据或 1000 次 bootstrap 重采样的 PPV 和使用 Gwet 的 AC1 的读者间一致性。

结果

NMIBC 患者比例为 81.0%(119/147)。预测模型的 CT 标准如下:(a)肌肉侵犯评分<2;(b)肿瘤蒂评分>0;和(c)肿瘤大小<3cm。从原始数据来看,模型对 NMIBC 的 PPV 在读者 1 中为 92.7%(51/55;95%置信区间[CI]82.4-98.0),在读者 2 中为 93.3%(42/45;95%CI81.7-98.6)。从 bootstrap 数据来看,读者 1 的 PPV 为 92.8%(95%CI85.2-98.3),读者 2 的 PPV 为 93.4%(95%CI84.9-99.9)。该模型的 AC1 为 0.753(95%CI0.647-0.859)。

结论

当前基于 CT 的预测模型在识别 NMIBC 患者方面具有高 PPV。根据 CT 发现,大约 30%的膀胱癌患者可能需要对膀胱影像学报告和数据系统的解释进行额外的 MRI 检查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验