文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习重建技术提高儿科 CT 的图像质量并降低辐射剂量。

Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction.

机构信息

From the Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333, Burnet Ave, Cincinnati, OH 45329; and Department of Radiology, University of Cincinnati Medical School, Cincinnati, Ohio.

出版信息

Radiology. 2021 Jan;298(1):180-188. doi: 10.1148/radiol.2020202317. Epub 2020 Nov 17.


DOI:10.1148/radiol.2020202317
PMID:33201790
Abstract

Background CT deep learning reconstruction (DLR) algorithms have been developed to remove image noise. How the DLR affects image quality and radiation dose reduction has yet to be fully investigated. Purpose To investigate a DLR algorithm's dose reduction and image quality improvement for pediatric CT. Materials and Methods DLR was compared with filtered back projection (FBP), statistical-based iterative reconstruction (SBIR), and model-based iterative reconstruction (MBIR) in a retrospective study by using data from CT examinations of pediatric patients (February to December 2018). A comparison of object detectability for 15 objects (diameter, 0.5-10 mm) at four contrast difference levels (50, 150, 250, and 350 HU) was performed by using a non-prewhitening-matched mathematical observer model with eye filter (), task transfer function, and noise power spectrum analysis. Object detectability was assessed by using area under the curve analysis. Three pediatric radiologists performed an observer study to assess anatomic structures with low object-to-background signal and contrast to noise in the azygos vein, right hepatic vein, common bile duct, and superior mesenteric artery. Observers rated from 1 to 10 (worst to best) for edge definition, quantum noise level, and object conspicuity. Analysis of variance and Tukey honest significant difference post hoc tests were used to analyze differences between reconstruction algorithms. Results Images from 19 patients (mean age, 11 years ± 5 [standard deviation]; 10 female patients) were evaluated. Compared with FBP, SBIR, and MBIR, DLR demonstrated improved object detectability by 51% (16.5 of 10.9), 18% (16.5 of 13.9), and 11% (16.5 of 14.8), respectively. DLR reduced image noise without noise texture effects seen with MBIR. Radiologist ratings were 7 ± 1 (DLR), 6.2 ± 1 (MBIR), 6.2 ± 1 (SBIR), and 4.6 ± 1 (FBP); two-way analysis of variance showed a difference on the basis of reconstruction type ( < .001). Radiologists consistently preferred DLR images (intraclass correlation coefficient, 0.89; 95% CI: 0.83, 0.93). DLR demonstrated 52% (1 of 2.1) greater dose reduction than SBIR. Conclusion The DLR algorithm improved image quality and dose reduction without sacrificing noise texture and spatial resolution. © RSNA, 2020

摘要

背景 CT 深度学习重建(DLR)算法已被开发用于去除图像噪声。但是,DLR 如何影响图像质量和减少辐射剂量仍有待充分研究。目的 研究 DLR 算法在儿科 CT 中的剂量降低和图像质量改善效果。材料与方法 回顾性研究使用了 2018 年 2 月至 12 月期间儿科患者 CT 检查的数据,对 DLR 与滤波反投影(FBP)、基于统计的迭代重建(SBIR)和基于模型的迭代重建(MBIR)进行了比较。使用具有眼部滤波器()、任务传递函数和噪声功率谱分析的非预白化匹配数学观察者模型,对 15 个直径为 0.5-10mm 的物体在 4 个对比差异水平(50、150、250 和 350HU)的物体可检测性进行了比较。使用曲线下面积分析评估物体可检测性。3 名儿科放射科医生进行了一项观察者研究,以评估在奇静脉、右肝静脉、胆总管和肠系膜上动脉中具有低物体与背景信号对比和噪声的解剖结构。观察者对边缘定义、量子噪声水平和物体显著性进行了 1 到 10 分(最差到最好)的评分。方差分析和 Tukey 诚实显著差异事后检验用于分析重建算法之间的差异。结果 19 名患者(平均年龄,11 岁±5[标准差];10 名女性)的图像得到了评估。与 FBP、SBIR 和 MBIR 相比,DLR 分别提高了 51%(10.9 的 16.5)、18%(13.9 的 16.5)和 11%(14.8 的 16.5)的物体可检测性。DLR 降低了图像噪声,而 MBIR 则没有出现噪声纹理效应。放射科医生的评分分别为 7±1(DLR)、6.2±1(MBIR)、6.2±1(SBIR)和 4.6±1(FBP);双向方差分析显示基于重建类型的差异(<.001)。放射科医生始终更喜欢 DLR 图像(组内相关系数,0.89;95%置信区间:0.83,0.93)。与 SBIR 相比,DLR 显示出 52%(2.1 的 1)更大的剂量降低。结论 DLR 算法改善了图像质量和剂量降低,同时没有牺牲噪声纹理和空间分辨率。

相似文献

[1]
Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction.

Radiology. 2021-1

[2]
Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.

AJR Am J Roentgenol. 2022-8

[3]
Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.

Eur Radiol. 2023-12

[4]
Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT.

Korean J Radiol. 2022-7

[5]
Deep learning-based reconstruction can improve the image quality of low radiation dose head CT.

Eur Radiol. 2023-5

[6]
Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.

Eur Radiol. 2022-5

[7]
Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection.

Br J Radiol. 2021-7-1

[8]
Image quality improvement with deep learning-based reconstruction on abdominal ultrahigh-resolution CT: A phantom study.

J Appl Clin Med Phys. 2021-7

[9]
Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction.

BMC Med Imaging. 2021-10-10

[10]
Image quality comparison of lower extremity CTA between CT routine reconstruction algorithms and deep learning reconstruction.

BMC Med Imaging. 2023-2-19

引用本文的文献

[1]
Application of deep learning reconstruction at prone position chest scanning of early interstitial lung disease.

BMC Med Imaging. 2025-8-19

[2]
Deep learning reconstruction combined with contrast-enhancement boost in dual-low dose CT pulmonary angiography: a two-center prospective trial.

Eur Radiol. 2025-5-24

[3]
Recovering Image Quality in Low-Dose Pediatric Renal Scintigraphy Using Deep Learning.

J Imaging. 2025-3-19

[4]
Comparing two deep learning spectral reconstruction levels for abdominal evaluation using a rapid-kVp-switching dual-energy CT scanner.

Abdom Radiol (NY). 2025-3-17

[5]
CZT-based photon-counting-detector CT with deep-learning reconstruction: image quality and diagnostic confidence for lung tumor assessment.

Jpn J Radiol. 2025-3-7

[6]
Deep learning-driven pulmonary artery and vein segmentation reveals demography-associated vasculature anatomical differences.

Nat Commun. 2025-3-6

[7]
CT-Free Attenuation Correction in Paediatric Long Axial Field-of-View Positron Emission Tomography Using Synthetic CT from Emission Data.

Diagnostics (Basel). 2024-12-12

[8]
Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis.

Eur Radiol. 2025-6

[9]
State-of-the-Art Deep Learning CT Reconstruction Algorithms in Abdominal Imaging.

Radiographics. 2024-12

[10]
Deep learning based ultra-low dose fan-beam computed tomography image enhancement algorithm: Feasibility study in image quality for radiotherapy.

J Appl Clin Med Phys. 2024-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索