Suppr超能文献

基于无监督学习的CT肿瘤内亚区域定量分析可预测膀胱癌患者的风险分层。

Unsupervised learning-based quantitative analysis of CT intratumoral subregions predicts risk stratification of bladder cancer patients.

作者信息

Wang Ying, Wang Hexiang, Li Na, Wu Siyu, Shi Rongchao, Sun Kui, Wang Ximing

机构信息

Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing Wu Road, No. 324, Jinan, 250021, China.

School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.

出版信息

BMC Med. 2025 Jun 2;23(1):328. doi: 10.1186/s12916-025-04163-2.

Abstract

BACKGROUND

Preoperative diagnosis of muscle invasion and American Joint Committee on Cancer (AJCC) stage plays a crucial role in guiding treatment strategies for bladder cancer (BCa). Utilizing quantitative analysis of tumor subregions via CT imaging holds promise in identifying high-risk populations. Developing and evaluating the performance of an unsupervised clustering algorithm-based intratumoral subregion radiomics model for distinguishing between bladder muscle invasion and AJCC stage.

METHODS

This retrospective study included BCa patients who underwent CT imaging prior to transurethral resection of bladder tumor (TURBT) between January 2006 and December 2022, with all cases being histologically confirmed. Utilizing an unsupervised clustering learning method, the tumor region was classified into three intratumoral subregions, and radiomics features were extracted from both the whole tumor region and each intratumoral subregion. Following feature selection and nested cross-validation, seven predictive models were developed: clinicopathological model, whole-tumor model, intratumoral subregion 1 model, intratumoral subregion 2 model, intratumoral subregion 3 model, merged intratumoral subregion model, and fusion model. Predictive performance was evaluated using the area under the receiver operating characteristic curve (AUROC).

RESULTS

A total of 1017 patients were included in this study, with 778 from center A (training cohort; median age, 67 years [IQR, 69-75 years]) and 239 from center B (external validation cohort; median age, 58.5 years [IQR, 66-74 years]). In the external validation cohort, the fusion model AUROC was highest for predicting muscle invasion and AJCC stage tasks, at 0.884 (95% CI, 0.842, 0.926) and 0.832 (95% CI, 0.768, 0.897), respectively. The merged intratumoral subregion model outperformed the whole-tumor model (AUROC, muscle invasion, 0.871 vs 0.804, p = 0.004; AJCC stage, 0.832 vs 0.804, p = 0.4).

CONCLUSIONS

The subregional radiomics model based on preoperative CT shows potential value in predicting muscle invasion and AJCC stage. This noninvasive risk stratification tool may offer supportive insights into surgical approaches and treatment decisions for BCa patients.

摘要

背景

术前诊断肌肉浸润和美国癌症联合委员会(AJCC)分期在指导膀胱癌(BCa)的治疗策略中起着至关重要的作用。通过CT成像对肿瘤亚区域进行定量分析有望识别高危人群。开发并评估基于无监督聚类算法的瘤内亚区域放射组学模型在区分膀胱肌肉浸润和AJCC分期方面的性能。

方法

这项回顾性研究纳入了2006年1月至2022年12月期间在经尿道膀胱肿瘤切除术(TURBT)前接受CT成像的BCa患者,所有病例均经组织学证实。利用无监督聚类学习方法,将肿瘤区域分为三个瘤内亚区域,并从整个肿瘤区域和每个瘤内亚区域提取放射组学特征。经过特征选择和嵌套交叉验证,开发了七个预测模型:临床病理模型、全肿瘤模型、瘤内亚区域1模型、瘤内亚区域2模型、瘤内亚区域3模型、合并瘤内亚区域模型和融合模型。使用受试者操作特征曲线下面积(AUROC)评估预测性能。

结果

本研究共纳入1017例患者,其中778例来自中心A(训练队列;中位年龄67岁[四分位间距,69 - 75岁]),239例来自中心B(外部验证队列;中位年龄58.5岁[四分位间距,66 - 74岁])。在外部验证队列中,融合模型在预测肌肉浸润和AJCC分期任务时的AUROC最高,分别为0.884(95%CI,0.842,0.926)和0.832(95%CI,0.768,0.897)。合并瘤内亚区域模型的表现优于全肿瘤模型(AUROC,肌肉浸润:0.871对0.804,p = 0.004;AJCC分期:0.832对0.804,p = 0.4)。

结论

基于术前CT的亚区域放射组学模型在预测肌肉浸润和AJCC分期方面显示出潜在价值。这种非侵入性风险分层工具可能为BCa患者的手术方法和治疗决策提供支持性见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a123/12131335/eaf748b95048/12916_2025_4163_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验