Suppr超能文献

神经影像学在 AT(N)框架中作为组织微结构神经退行性变标志物的研究:定义异常神经退行性变并提高对临床状态的预测能力。

Neuroimaging of tissue microstructure as a marker of neurodegeneration in the AT(N) framework: defining abnormal neurodegeneration and improving prediction of clinical status.

机构信息

School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.

Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Alzheimers Res Ther. 2023 Oct 17;15(1):180. doi: 10.1186/s13195-023-01281-y.

Abstract

BACKGROUND

Alzheimer's disease involves accumulating amyloid (A) and tau (T) pathology, and progressive neurodegeneration (N), leading to the development of the AD clinical syndrome. While several markers of N have been proposed, efforts to define normal vs. abnormal neurodegeneration based on neuroimaging have been limited. Sensitive markers that may account for or predict cognitive dysfunction for individuals in early disease stages are critical.

METHODS

Participants (n = 296) defined on A and T status and spanning the AD-clinical continuum underwent multi-shell diffusion-weighted magnetic resonance imaging to generate Neurite Orientation Dispersion and Density Imaging (NODDI) metrics, which were tested as markers of N. To better define N, we developed age- and sex-adjusted robust z-score values to quantify normal and AD-associated (abnormal) neurodegeneration in both cortical gray matter and subcortical white matter regions of interest. We used general logistic regression with receiver operating characteristic (ROC) and area under the curve (AUC) analysis to test whether NODDI metrics improved diagnostic accuracy compared to models that only relied on cerebrospinal fluid (CSF) A and T status (alone and in combination).

RESULTS

Using internal robust norms, we found that NODDI metrics correlate with worsening cognitive status and that NODDI captures early, AD neurodegenerative pathology in the gray matter of cognitively unimpaired, but A/T biomarker-positive, individuals. NODDI metrics utilized together with A and T status improved diagnostic prediction accuracy of AD clinical status, compared with models using CSF A and T status alone.

CONCLUSION

Using a robust norms approach, we show that abnormal AD-related neurodegeneration can be detected among cognitively unimpaired individuals. Metrics derived from diffusion-weighted imaging are potential sensitive markers of N and could be considered for trial enrichment and as outcomes in clinical trials. However, given the small sample sizes, the exploratory nature of the work must be acknowledged.

摘要

背景

阿尔茨海默病涉及淀粉样蛋白(A)和 tau(T)病理学以及进行性神经退行性变(N),导致 AD 临床综合征的发展。虽然已经提出了几种 N 的标志物,但基于神经影像学定义正常与异常神经退行性变的努力受到限制。对于处于疾病早期阶段的个体,能够解释或预测认知功能障碍的敏感标志物至关重要。

方法

参与者(n=296)根据 A 和 T 状态定义,并涵盖 AD 临床连续体,接受多壳层扩散加权磁共振成像,以生成神经丝取向分散和密度成像(NODDI)指标,这些指标被测试为 N 的标志物。为了更好地定义 N,我们开发了年龄和性别调整的稳健 z 分数值,以量化皮质灰质和皮质下白质感兴趣区域中正常和 AD 相关(异常)神经退行性变。我们使用通用逻辑回归与接收器操作特性(ROC)和曲线下面积(AUC)分析,以测试 NODDI 指标是否比仅依赖脑脊液(CSF)A 和 T 状态(单独和组合)的模型提高了诊断准确性。

结果

使用内部稳健规范,我们发现 NODDI 指标与认知状态恶化相关,并且 NODDI 在认知未受损但 A/T 生物标志物阳性的个体中捕获了早期的 AD 神经退行性病理学。与使用 CSF A 和 T 状态的模型相比,将 NODDI 指标与 A 和 T 状态一起使用可提高 AD 临床状态的诊断预测准确性。

结论

使用稳健规范方法,我们表明可以在认知未受损的个体中检测到异常的 AD 相关神经退行性变。来自扩散加权成像的指标是 N 的潜在敏感标志物,可考虑用于试验富集和临床试验的结果。然而,鉴于样本量较小,必须承认这项工作的探索性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd8/10583332/0d43738c790f/13195_2023_1281_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验