Suppr超能文献

地下与地上植物-微生物相互作用:聚焦大豆、根际细菌和菌根真菌

Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi.

作者信息

Igiehon Nicholas O, Babalola Olubukola O

机构信息

Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa.

出版信息

Open Microbiol J. 2018 Jul 31;12:261-279. doi: 10.2174/1874285801812010261. eCollection 2018.

Abstract

INTRODUCTION

Organisms seldom exist in isolation and are usually involved in interactions with several hosts and these interactions in conjunction with the physicochemical parameters of the soil affect plant growth and development. Researches into below and aboveground microbial community are unveiling a myriad of intriguing interactions within the rhizosphere, and many of the interactions are facilitated by exudates that are secreted by plants roots. These interactions can be harnessed for beneficial use in agriculture to enhance crop productivity especially in semi-arid and arid environments.

THE RHIZOSPHERE

The rhizosphere is the region of soil close to plants roots that contain large number of diverse organisms. Examples of microbial candidates that are found in the rhizosphere include the Arbuscular Mycorrhizal Fungi (AMF) and rhizobacteria. These rhizosphere microorganisms use plant root secretions such as mucilage and flavonoids which are able to influence their diversity and function and also enhance their potential to colonize plants root.

NATURAL INTERACTIONS BETWEEN MICROORGANISMS AND PLANT

In the natural environments, plants live in interactions with different microorganisms, which thrive belowground in the rhizosphere and aboveground in the phyllosphere. Some of the plant-microbial interactions (which can be in the form of antagonism, amensalism, parasitism and symbiosis) protect the host plants against detrimental microbial and non-microbial invaders and provide nutrients for plants while others negatively affect plants. These interactions can influence below-ground-above-ground plants' biomass development thereby playing significant role in sustaining plants. Therefore, understanding microbial interactions within the rhizosphere and phyllosphere is urgent towards farming practices that are less dependent on conventional chemical fertilizers, which have known negative impacts on the environments.

BELOW GROUND RHIZOBACTERIA INTERACTIONS ALLEVIATE DROUGHT STRESS

Drought stress is one of the major factors militating against agricultural productivity globally and is likely to further increase. Belowground rhizobacteria interactions could play important role in alleviating drought stress in plants. These beneficial rhizobacterial colonize the rhizosphere of plants and impart drought tolerance by up regulation or down regulation of drought responsive genes such as ascorbate peroxidase, S-adenosyl-methionine synthetase, and heat shock protein.

INSIGHTS INTO BELOW AND ABOVE THE GROUND MICROBIAL INTERACTIONS VIA OMIC STUDIES

Investigating complex microbial community in the environment is a big challenge. Therefore, omic studies of microorganisms that inhabit the rhizosphere are important since this is where most plant-microbial interactions occur. One of the aims of this review is not to give detailed account of all the present omic techniques, but instead to highlight the current omic techniques that can possibly lead to detection of novel genes and their respective proteins within the rhizosphere which may be of significance in enhancing crop plants (such as soybean) productivity especially in semi-arid and arid environments.

FUTURE PROSPECTS AND CONCLUSIONS

Plant-microbial interactions are not totally understood, and there is, therefore, the need for further studies on these interactions in order to get more insights that may be useful in sustainable agricultural development. With the emergence of omic techniques, it is now possible to effectively monitor transformations in rhizosphere microbial community together with their effects on plant development. This may pave way for scientists to discover new microbial species that will interact effectively with plants. Such microbial species can be used as biofertilizers and/or bio-pesticides to increase crop yield and enhance global food security.

摘要

引言

生物很少孤立存在,通常会与多个宿主发生相互作用,而这些相互作用连同土壤的物理化学参数会影响植物的生长发育。对地下和地上微生物群落的研究揭示了根际内无数有趣的相互作用,其中许多相互作用是由植物根系分泌的渗出物促成的。这些相互作用可用于农业中的有益用途,以提高作物生产力,特别是在半干旱和干旱环境中。

根际

根际是靠近植物根系的土壤区域,含有大量不同的生物。在根际中发现的微生物候选物包括丛枝菌根真菌(AMF)和根际细菌。这些根际微生物利用植物根系分泌物,如黏液和类黄酮,这些分泌物能够影响它们的多样性和功能,并增强它们在植物根系上定殖的潜力。

微生物与植物之间的自然相互作用

在自然环境中,植物与不同的微生物相互作用,这些微生物在地下根际和地上叶际中繁衍生息。一些植物 - 微生物相互作用(可以是拮抗、偏害共生、寄生和共生的形式)保护宿主植物免受有害微生物和非微生物入侵者的侵害,并为植物提供养分,而其他相互作用则对植物产生负面影响。这些相互作用可以影响地下 - 地上植物的生物量发育,从而在维持植物生长方面发挥重要作用。因此,了解根际和叶际内的微生物相互作用对于减少对传统化肥依赖的耕作方式至关重要,因为传统化肥对环境有已知的负面影响。

地下根际细菌相互作用减轻干旱胁迫

干旱胁迫是全球农业生产力面临的主要因素之一,而且可能会进一步加剧。地下根际细菌相互作用在减轻植物干旱胁迫方面可能发挥重要作用。这些有益的根际细菌定殖在植物的根际,并通过上调或下调干旱响应基因,如抗坏血酸过氧化物酶、S - 腺苷甲硫氨酸合成酶和热休克蛋白,赋予植物耐旱性。

通过组学研究洞察地下和地上微生物相互作用

研究环境中的复杂微生物群落是一项巨大的挑战。因此,对根际中存在的微生物进行组学研究很重要,因为这里是大多数植物 - 微生物相互作用发生的地方。本综述的目的之一不是详细介绍所有现有的组学技术,而是强调当前可能导致在根际中检测到新基因及其各自蛋白质的组学技术,这些基因和蛋白质可能对提高作物(如大豆)生产力具有重要意义,特别是在半干旱和干旱环境中。

未来展望与结论

植物 - 微生物相互作用尚未完全被理解,因此需要对这些相互作用进行进一步研究,以获得更多可能对可持续农业发展有用的见解。随着组学技术的出现,现在有可能有效地监测根际微生物群落的变化及其对植物发育的影响。这可能为科学家发现与植物有效相互作用的新微生物物种铺平道路。这些微生物物种可以用作生物肥料和/或生物农药,以提高作物产量并增强全球粮食安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验