Suppr超能文献

AffinityVAE:用于蛋白质-配体亲和力预测和药物设计的多目标模型。

AffinityVAE: A multi-objective model for protein-ligand affinity prediction and drug design.

机构信息

School of Computer Engineering and Science, Shanghai University, Shanghai, China.

School of Computer Engineering and Science, Shanghai University, Shanghai, China.

出版信息

Comput Biol Chem. 2023 Dec;107:107971. doi: 10.1016/j.compbiolchem.2023.107971. Epub 2023 Oct 11.

Abstract

In the prediction of protein-ligand affinity, the traditional methods require a large amount of computing resources, and have certain limitations in predicting and simulating the structural changes. Although employing data-driven approaches can yield favorable outcomes in deep learning, it entails a lack of interpretability. Some methods may require additional structural information or domain knowledge to support the interpretation, which may limit their applicability. This paper proposes an affinity variational autoencoder (AffinityVAE) using interaction feature mapping and a variational autoencoder, which consists of a multi-objective model capable of end-to-end affinity prediction and drug discovery. In this study, the limitations of affinity prediction in terms of interpretability are tackled by proposing the concept of a protein-ligand interaction feature map. This increases the diversity and quantity of protein-ligand binding data by designing an adaptive autoencoder of target chemical properties to generate new ligands similar to known ligands and adding them to the original training set. AffinityVAE is then retrained using this extended training set to further validate the protein-ligand binding affinity prediction. Comparisons were conducted between the AffinityVAE and recent methods to demonstrate the high efficiency of the proposed model. The experimental results show that AffinityVAE has very high prediction performance, and it has the potential to enhance the diversity and the amount of protein-ligand binding data, which promotes the drug development.

摘要

在蛋白质配体亲和力预测中,传统方法需要大量的计算资源,并且在预测和模拟结构变化方面存在一定的局限性。虽然采用数据驱动的方法在深度学习中可以产生有利的结果,但它缺乏可解释性。有些方法可能需要额外的结构信息或领域知识来支持解释,这可能限制了它们的适用性。本文提出了一种使用交互特征映射和变分自动编码器的亲和力变分自动编码器(AffinityVAE),它由一个多目标模型组成,能够进行端到端亲和力预测和药物发现。在这项研究中,通过提出蛋白质-配体相互作用特征图的概念,解决了亲和力预测在可解释性方面的局限性。通过设计目标化学性质的自适应自动编码器来生成与已知配体相似的新配体,并将其添加到原始训练集中,从而增加了蛋白质-配体结合数据的多样性和数量。然后,使用这个扩展的训练集重新训练 AffinityVAE,以进一步验证蛋白质-配体结合亲和力的预测。将 AffinityVAE 与最近的方法进行了比较,以证明所提出的模型的高效性。实验结果表明,AffinityVAE 具有非常高的预测性能,并且有可能增强蛋白质-配体结合数据的多样性和数量,从而促进药物开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验