Department of Computer Science, Yonsei University, Seoul, Republic of Korea.
UBLBio Corporation, 16679, Suwon, Republic of Korea.
BMC Bioinformatics. 2021 Nov 8;22(1):542. doi: 10.1186/s12859-021-04466-0.
Accurate prediction of protein-ligand binding affinity is important for lowering the overall cost of drug discovery in structure-based drug design. For accurate predictions, many classical scoring functions and machine learning-based methods have been developed. However, these techniques tend to have limitations, mainly resulting from a lack of sufficient energy terms to describe the complex interactions between proteins and ligands. Recent deep-learning techniques can potentially solve this problem. However, the search for more efficient and appropriate deep-learning architectures and methods to represent protein-ligand complex is ongoing.
In this study, we proposed a deep-neural network model to improve the prediction accuracy of protein-ligand complex binding affinity. The proposed model has two important features, descriptor embeddings with information on the local structures of a protein-ligand complex and an attention mechanism to highlight important descriptors for binding affinity prediction. The proposed model performed better than existing binding affinity prediction models on most benchmark datasets.
We confirmed that an attention mechanism can capture the binding sites in a protein-ligand complex to improve prediction performance. Our code is available at https://github.com/Blue1993/BAPA .
准确预测蛋白质-配体结合亲和力对于降低基于结构的药物设计中药物发现的总体成本非常重要。为了进行准确的预测,已经开发出了许多经典的评分函数和基于机器学习的方法。然而,这些技术往往存在局限性,主要是由于缺乏足够的能量项来描述蛋白质和配体之间的复杂相互作用。最近的深度学习技术可能能够解决这个问题。然而,寻找更有效和合适的深度学习架构和方法来表示蛋白质-配体复合物仍在进行中。
在这项研究中,我们提出了一种深度神经网络模型来提高蛋白质-配体复合物结合亲和力的预测准确性。所提出的模型具有两个重要特征,即具有蛋白质-配体复合物局部结构信息的描述符嵌入和用于突出对结合亲和力预测重要的描述符的注意力机制。在所使用的大多数基准数据集上,所提出的模型的性能优于现有的结合亲和力预测模型。
我们证实,注意力机制可以捕获蛋白质-配体复合物中的结合位点,从而提高预测性能。我们的代码可在 https://github.com/Blue1993/BAPA 上获得。