Suppr超能文献

药物设计中的深度学习:蛋白质-配体结合亲和力预测

Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.

作者信息

Rezaei Mohammad A, Li Yanjun, Wu Dapeng, Li Xiaolin, Li Chenglong

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):407-417. doi: 10.1109/TCBB.2020.3046945. Epub 2022 Feb 3.

Abstract

Computational drug design relies on the calculation of binding strength between two biological counterparts especially a chemical compound, i.e., a ligand, and a protein. Predicting the affinity of protein-ligand binding with reasonable accuracy is crucial for drug discovery, and enables the optimization of compounds to achieve better interaction with their target protein. In this paper, we propose a data-driven framework named DeepAtom to accurately predict the protein-ligand binding affinity. With 3D Convolutional Neural Network (3D-CNN) architecture, DeepAtom could automatically extract binding related atomic interaction patterns from the voxelized complex structure. Compared with the other CNN based approaches, our light-weight model design effectively improves the model representational capacity, even with the limited available training data. We carried out validation experiments on the PDBbind v.2016 benchmark and the independent Astex Diverse Set. We demonstrate that the less feature engineering dependent DeepAtom approach consistently outperforms the other baseline scoring methods. We also compile and propose a new benchmark dataset to further improve the model performances. With the new dataset as training input, DeepAtom achieves Pearson's R=0.83 and RMSE=1.23 pK units on the PDBbind v.2016 core set. The promising results demonstrate that DeepAtom models can be potentially adopted in computational drug development protocols such as molecular docking and virtual screening.

摘要

计算药物设计依赖于计算两种生物对应物之间的结合强度,特别是一种化合物(即配体)与一种蛋白质之间的结合强度。以合理的准确度预测蛋白质-配体结合的亲和力对于药物发现至关重要,并且能够优化化合物以实现与它们的靶蛋白更好的相互作用。在本文中,我们提出了一个名为DeepAtom的数据驱动框架,以准确预测蛋白质-配体结合亲和力。借助三维卷积神经网络(3D-CNN)架构,DeepAtom能够从体素化的复合物结构中自动提取与结合相关的原子相互作用模式。与其他基于CNN的方法相比,我们的轻量级模型设计有效地提高了模型的表征能力,即使在可用训练数据有限的情况下也是如此。我们在PDBbind v.2016基准测试和独立的阿斯利康多样集上进行了验证实验。我们证明,较少依赖特征工程的DeepAtom方法始终优于其他基线评分方法。我们还汇编并提出了一个新的基准数据集,以进一步提高模型性能。以新数据集作为训练输入,DeepAtom在PDBbind v.2016核心集上实现了皮尔逊相关系数R = 0.83和均方根误差RMSE = 1.23 pK单位。这些有前景的结果表明,DeepAtom模型可以潜在地应用于计算药物开发协议,如分子对接和虚拟筛选。

相似文献

1
Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.药物设计中的深度学习:蛋白质-配体结合亲和力预测
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):407-417. doi: 10.1109/TCBB.2020.3046945. Epub 2022 Feb 3.

引用本文的文献

本文引用的文献

3
SAnDReS: A Computational Tool for Docking.SAnDReS:一种用于对接的计算工具。
Methods Mol Biol. 2019;2053:51-65. doi: 10.1007/978-1-4939-9752-7_4.
5
Taba: A Tool to Analyze the Binding Affinity.塔巴:一种分析结合亲和力的工具。
J Comput Chem. 2020 Jan 5;41(1):69-73. doi: 10.1002/jcc.26048. Epub 2019 Aug 13.
6
Binding affinity in drug design: experimental and computational techniques.药物设计中的结合亲和力:实验和计算技术。
Expert Opin Drug Discov. 2019 Aug;14(8):755-768. doi: 10.1080/17460441.2019.1623202. Epub 2019 May 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验