Suppr超能文献

基于哈密顿蒙特卡罗采样的快速重建算法。

Fast reconstruction algorithm based on HMC sampling.

作者信息

Lian Hang, Xu Jinchen, Zhu Yu, Fan Zhiqiang, Liu Yi, Shan Zheng

机构信息

Information Engineering University, Zhengzhou, China.

出版信息

Sci Rep. 2023 Oct 18;13(1):17773. doi: 10.1038/s41598-023-45133-z.

Abstract

In Noisy Intermediate-Scale Quantum (NISQ) era, the scarcity of qubit resources has prevented many quantum algorithms from being implemented on quantum devices. Circuit cutting technology has greatly alleviated this problem, which allows us to run larger quantum circuits on real quantum machines with currently limited qubit resources at the cost of additional classical overhead. However, the classical overhead of circuit cutting grows exponentially with the number of cuts and qubits, and the excessive postprocessing overhead makes it difficult to apply circuit cutting to large scale circuits. In this paper, we propose a fast reconstruction algorithm based on Hamiltonian Monte Carlo (HMC) sampling, which samples the high probability solutions by Hamiltonian dynamics from state space with dimension growing exponentially with qubit. Our algorithm avoids excessive computation when reconstructing the original circuit probability distribution, and greatly reduces the circuit cutting post-processing overhead. The improvement is crucial for expanding of circuit cutting to a larger scale on NISQ devices.

摘要

在嘈杂的中等规模量子(NISQ)时代,量子比特资源的稀缺阻碍了许多量子算法在量子设备上的实现。电路切割技术极大地缓解了这一问题,它使我们能够以额外的经典开销为代价,在当前量子比特资源有限的真实量子机器上运行更大的量子电路。然而,电路切割的经典开销随着切割次数和量子比特数呈指数增长,过多的后处理开销使得将电路切割应用于大规模电路变得困难。在本文中,我们提出了一种基于哈密顿蒙特卡罗(HMC)采样的快速重构算法,该算法通过哈密顿动力学从状态空间中对高概率解进行采样,状态空间的维度随着量子比特数呈指数增长。我们的算法在重构原始电路概率分布时避免了过多的计算,并大大减少了电路切割的后处理开销。这一改进对于在NISQ设备上将电路切割扩展到更大规模至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ab/10584981/a425c3a54eca/41598_2023_45133_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验