Suppr超能文献

通过量子噪声效应电路组实现量子误差缓解。

Quantum error mitigation via quantum-noise-effect circuit groups.

作者信息

Hama Yusuke, Nishi Hirofumi

机构信息

Quemix Inc., 2-11-2 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan.

Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.

出版信息

Sci Rep. 2024 Mar 13;14(1):6077. doi: 10.1038/s41598-024-52485-7.

Abstract

Near-term quantum computers have been built as intermediate-scale quantum devices and are fragile against quantum noise effects, namely, NISQ devices. Traditional quantum-error-correcting codes are not implemented on such devices and to perform quantum computation in good accuracy with these machines we need to develop alternative approaches for mitigating quantum computational errors. In this work, we propose quantum error mitigation (QEM) scheme for quantum computational errors which occur due to couplings with environments during gate operations, i.e., decoherence. To establish our QEM scheme, first we estimate the quantum noise effects on single-qubit states and represent them as groups of quantum circuits, namely, quantum-noise-effect circuit groups. Then our QEM scheme is conducted by subtracting expectation values generated by the quantum-noise-effect circuit groups from those obtained by the quantum circuits for the quantum algorithms under consideration. As a result, the quantum noise effects are reduced, and we obtain approximately the ideal expectation values via the quantum-noise-effect circuit groups and the numbers of elementary quantum circuits composing them scale polynomial with respect to the products of the depths of quantum algorithms and the numbers of register bits. To numerically demonstrate the validity of our QEM scheme, we run noisy quantum simulations of qubits under amplitude damping effects for four types of quantum algorithms. Furthermore, we implement our QEM scheme on IBM Q Experience processors and examine its efficacy. Consequently, the validity of our scheme is verified via both the quantum simulations and the quantum computations on the real quantum devices. Our QEM scheme is solely composed of quantum-computational operations (quantum gates and measurements), and thus, it can be conducted by any type of quantum device. In addition, it can be applied to error mitigation for many other types of quantum noise effects as well as noisy quantum computing of long-depth quantum algorithms.

摘要

近期的量子计算机已被构建为中等规模量子设备,并且对量子噪声效应较为脆弱,即噪声中等规模量子(NISQ)设备。传统的量子纠错码无法在此类设备上实现,为了使用这些机器高精度地执行量子计算,我们需要开发减轻量子计算误差的替代方法。在这项工作中,我们针对由于门操作期间与环境耦合(即退相干)而出现的量子计算误差,提出了量子误差减轻(QEM)方案。为了建立我们的QEM方案,首先我们估计单比特态上的量子噪声效应,并将它们表示为量子电路组,即量子噪声效应电路组。然后,我们的QEM方案通过从所考虑的量子算法的量子电路获得的期望值中减去由量子噪声效应电路组生成的期望值来进行。结果,量子噪声效应得以降低,并且我们通过量子噪声效应电路组获得了近似理想的期望值,并且构成它们的基本量子电路的数量相对于量子算法的深度与寄存器比特数的乘积呈多项式缩放。为了从数值上证明我们的QEM方案的有效性,我们针对四种类型的量子算法,对处于振幅阻尼效应下的量子比特进行了有噪声量子模拟。此外,我们在IBM Q Experience处理器上实现了我们的QEM方案并检验了其有效性。因此,通过量子模拟和在真实量子设备上的量子计算,我们方案的有效性均得到了验证。我们的QEM方案仅由量子计算操作(量子门和测量)组成,因此,它可以由任何类型的量子设备执行。此外,它还可以应用于减轻许多其他类型的量子噪声效应以及长深度量子算法的有噪声量子计算中的误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/11636875/bc968f22e40c/41598_2024_52485_Fig1_HTML.jpg

相似文献

1
Quantum error mitigation via quantum-noise-effect circuit groups.
Sci Rep. 2024 Mar 13;14(1):6077. doi: 10.1038/s41598-024-52485-7.
2
Non-Markovian cost function for quantum error mitigation with Dirac Gamma matrices representation.
Sci Rep. 2023 Nov 16;13(1):20069. doi: 10.1038/s41598-023-45053-y.
3
Efficient noise mitigation technique for quantum computing.
Sci Rep. 2023 Mar 8;13(1):3912. doi: 10.1038/s41598-023-30510-5.
4
Error rate reduction of single-qubit gates via noise-aware decomposition into native gates.
Sci Rep. 2022 Apr 16;12(1):6379. doi: 10.1038/s41598-022-10339-0.
5
Encoding a magic state with beyond break-even fidelity.
Nature. 2024 Jan;625(7994):259-263. doi: 10.1038/s41586-023-06846-3. Epub 2024 Jan 10.
6
Correcting Coherent Errors by Random Operation on Actual Quantum Hardware.
Entropy (Basel). 2023 Feb 10;25(2):324. doi: 10.3390/e25020324.
7
Error Mitigation for Short-Depth Quantum Circuits.
Phys Rev Lett. 2017 Nov 3;119(18):180509. doi: 10.1103/PhysRevLett.119.180509.
8
Error mitigation extends the computational reach of a noisy quantum processor.
Nature. 2019 Mar;567(7749):491-495. doi: 10.1038/s41586-019-1040-7. Epub 2019 Mar 27.
9
Error Mitigation for Universal Gates on Encoded Qubits.
Phys Rev Lett. 2021 Nov 12;127(20):200505. doi: 10.1103/PhysRevLett.127.200505.
10
Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry.
J Chem Theory Comput. 2023 Feb 14;19(3):783-789. doi: 10.1021/acs.jctc.2c00807. Epub 2023 Jan 27.

本文引用的文献

1
Error Mitigation for Universal Gates on Encoded Qubits.
Phys Rev Lett. 2021 Nov 12;127(20):200505. doi: 10.1103/PhysRevLett.127.200505.
2
Error Mitigation and Quantum-Assisted Simulation in the Error Corrected Regime.
Phys Rev Lett. 2021 Nov 12;127(20):200506. doi: 10.1103/PhysRevLett.127.200506.
3
Detecting and tracking drift in quantum information processors.
Nat Commun. 2020 Oct 26;11(1):5396. doi: 10.1038/s41467-020-19074-4.
4
A quantum algorithm for evolving open quantum dynamics on quantum computing devices.
Sci Rep. 2020 Feb 24;10(1):3301. doi: 10.1038/s41598-020-60321-x.
5
Benchmarking an 11-qubit quantum computer.
Nat Commun. 2019 Nov 29;10(1):5464. doi: 10.1038/s41467-019-13534-2.
6
Quantum supremacy using a programmable superconducting processor.
Nature. 2019 Oct;574(7779):505-510. doi: 10.1038/s41586-019-1666-5. Epub 2019 Oct 23.
7
Error-Mitigated Digital Quantum Simulation.
Phys Rev Lett. 2019 May 10;122(18):180501. doi: 10.1103/PhysRevLett.122.180501.
8
Error mitigation extends the computational reach of a noisy quantum processor.
Nature. 2019 Mar;567(7749):491-495. doi: 10.1038/s41586-019-1040-7. Epub 2019 Mar 27.
10
Error Mitigation for Short-Depth Quantum Circuits.
Phys Rev Lett. 2017 Nov 3;119(18):180509. doi: 10.1103/PhysRevLett.119.180509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验