Yan Siyu, Patel Jay B, Lee Jae Eun, Elmestekawy Karim A, Ratnasingham Sinclair R, Yuan Qimu, Herz Laura M, Noel Nakita K, Johnston Michael B
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom.
Institute for Advanced Study, Technical University of Munich, Munich, Lichtenbergstrasse 2a, D-85748 Garching Germany.
ACS Energy Lett. 2023 Sep 1;8(10):4008-4015. doi: 10.1021/acsenergylett.3c01368. eCollection 2023 Oct 13.
Metal halide perovskite semiconductors have shown significant potential for use in photovoltaic (PV) devices. While fabrication of perovskite thin films can be achieved through a variety of techniques, thermal vapor deposition is particularly promising, allowing for high-throughput fabrication. However, the ability to control the nucleation and growth of these materials, particularly at the charge-transport layer/perovskite interface, is critical to unlocking the full potential of vapor-deposited perovskite PV. In this study, we explore the use of a templating layer to control the growth of coevaporated perovskite films and find that such templating leads to highly oriented films with identical morphology, crystal structure, and optoelectronic properties independent of the underlying layers. Solar cells incorporating templated FACsPbICl show marked improvements with steady-state power conversion efficiency over 19.8%. Our findings provide a straightforward and reproducible method of controlling the charge-transport layer/coevaporated perovskite interface, further clearing the path toward large-scale fabrication of efficient PV devices.
金属卤化物钙钛矿半导体在光伏(PV)器件中的应用已展现出巨大潜力。虽然可以通过多种技术制备钙钛矿薄膜,但热蒸发沉积尤其具有前景,能够实现高通量制备。然而,控制这些材料的成核和生长能力,特别是在电荷传输层/钙钛矿界面处,对于释放气相沉积钙钛矿光伏的全部潜力至关重要。在本研究中,我们探索使用模板层来控制共蒸发钙钛矿薄膜的生长,发现这种模板作用会导致形成具有相同形态、晶体结构和光电特性的高度取向薄膜,且与底层无关。采用模板化FACsPbICl的太阳能电池在稳态功率转换效率超过19.8%时表现出显著改善。我们的研究结果提供了一种控制电荷传输层/共蒸发钙钛矿界面的直接且可重复的方法,进一步为高效光伏器件的大规模制造扫清了道路。