Lee Jae Eun, Righetto Marcello, Putland Benjamin W J, Yan Siyu, Lilly Joshua R S, Lal Snigdha, Jin Heon, Noel Nakita K, Johnston Michael B, Snaith Henry J, Herz Laura M
Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, U.K.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40363-40374. doi: 10.1021/acsami.5c05243. Epub 2025 Jul 8.
The copper-silver-bismuth-iodide compound CuAgBiI has emerged as a promising lead-free and environmentally friendly alternative to wide-bandgap lead-halide perovskites for applications in multijunction solar cells. Despite its promising optoelectronic properties, the efficiency of CuAgBiI is still severely limited by poor charge collection. Here, we investigate the impact of commonly used charge transport layers (CTLs), including poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), CuI, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and SnO, on the structural and optoelectronic properties of coevaporated CuAgBiI thin films. We reveal that while organic transport layers, such as PTAA and PCBM, form a relatively benign interface, inorganic transport layers, such as CuI and SnO, induce the formation of unintended impurity phases within the CuI-AgI-BiI solid solution space, significantly influencing structural and optoelectronic properties. We demonstrate that identification of these impurity phases requires careful cross-validation combining absorption, X-ray diffraction and THz photoconductivity spectroscopy because their structural and optoelectronic properties are very similar to those of CuAgBiI. Our findings highlight the critical role of CTLs in determining the structural and optoelectronic properties of coevaporated copper-silver-bismuth-iodide thin films and underscore the need for advanced interface engineering to optimize device efficiency and reproducibility.
铜 - 银 - 铋 - 碘化合物CuAgBiI已成为一种有前景的无铅且环保的材料,可替代宽带隙铅卤化物钙钛矿用于多结太阳能电池。尽管CuAgBiI具有良好的光电性能,但其电荷收集效率仍受到严重限制。在此,我们研究了常用电荷传输层(CTLs),包括聚[双(4 - 苯基)(2,4,6 - 三甲基苯基)胺](PTAA)、CuI、[6,6] - 苯基 - C61 - 丁酸甲酯(PCBM)和SnO,对共蒸发CuAgBiI薄膜的结构和光电性能的影响。我们发现,虽然有机传输层,如PTAA和PCBM,形成相对良性的界面,但无机传输层,如CuI和SnO,会在CuI - AgI - BiI固溶体空间内诱导形成意外的杂质相,显著影响结构和光电性能。我们证明,识别这些杂质相需要结合吸收光谱、X射线衍射和太赫兹光电导光谱进行仔细的交叉验证,因为它们的结构和光电性能与CuAgBiI非常相似。我们的研究结果突出了电荷传输层在决定共蒸发铜 - 银 - 铋 - 碘薄膜的结构和光电性能方面的关键作用,并强调了先进界面工程对于优化器件效率和再现性的必要性。