Lohmann Kilian B, Patel Jay B, Rothmann Mathias Uller, Xia Chelsea Q, Oliver Robert D J, Herz Laura M, Snaith Henry J, Johnston Michael B
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom.
ACS Energy Lett. 2020 Mar 13;5(3):710-717. doi: 10.1021/acsenergylett.0c00183. Epub 2020 Feb 4.
Understanding and controlling grain growth in metal halide perovskite polycrystalline thin films is an important step in improving the performance of perovskite solar cells. We demonstrate accurate control of crystallite size in CHNHPbI thin films by regulating substrate temperature during vacuum co-deposition of inorganic (PbI) and organic (CHNHI) precursors. Films co-deposited onto a cold (-2 °C) substrate exhibited large, micrometer-sized crystal grains, while films that formed at room temperature (23 °C) only produced grains of 100 nm extent. We isolated the effects of substrate temperature on crystal growth by developing a new method to control sublimation of the organic precursor, and CHNHPbI solar cells deposited in this way yielded a power conversion efficiency of up to 18.2%. Furthermore, we found substrate temperature directly affects the adsorption rate of CHNHI, thus impacting crystal formation and hence solar cell device performance via changes to the conversion rate of PbI to CHNHPbI and stoichiometry. These findings offer new routes to developing efficient solar cells through reproducible control of crystal morphology and composition.
理解并控制金属卤化物钙钛矿多晶薄膜中的晶粒生长是提高钙钛矿太阳能电池性能的重要一步。我们通过在无机(PbI)和有机(CHNHI)前驱体的真空共沉积过程中调节衬底温度,展示了对CHNHPbI薄膜中微晶尺寸的精确控制。共沉积在冷(-2°C)衬底上的薄膜呈现出大的、微米级的晶粒,而在室温(23°C)下形成的薄膜仅产生100nm大小的晶粒。我们通过开发一种控制有机前驱体升华的新方法,分离了衬底温度对晶体生长的影响,以这种方式制备的CHNHPbI太阳能电池的功率转换效率高达18.2%。此外,我们发现衬底温度直接影响CHNHI的吸附速率,从而通过改变PbI向CHNHPbI的转化率和化学计量比来影响晶体形成,进而影响太阳能电池器件性能。这些发现为通过可重复控制晶体形态和组成来开发高效太阳能电池提供了新途径。