Suppr超能文献

利用发光纳米颗粒进行实时ROS监测揭示皮肤炎症动态。

Real-time ROS monitoring with luminescent nanoparticles reveals skin inflammation dynamics.

作者信息

Abdesselem M, Pétri N, Kuhner R, Mousseau F, Rouffiac V, Gacoin T, Laplace-Builhé C, Alexandrou A, Bouzigues C I

机构信息

Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France.

Photon Imaging and Flow Cytometry, CNRS, INSERM, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805 Villejuif Cedex, France.

出版信息

Biomed Opt Express. 2023 Sep 25;14(10):5392-5404. doi: 10.1364/BOE.501914. eCollection 2023 Oct 1.

Abstract

Reactive oxygen species (ROS) are key regulators in numerous pathological contexts, including cancer or inflammation. Their role is complex, which justifies the need for methods enabling their quantitative and time-resolved monitoring , in the perspective to profile tissues of individual patients. However, current ROS detection methods do not provide these features. Here, we propose a new method based on the imaging of lanthanide-ion nanoparticles (GdVO:Eu), whose photoluminescence is modulated by the surrounding ROS concentration. We monitored their luminescence after intradermic injection in a mouse ear submitted to an inflammation-inducing topical stimulus. Based on this approach, we quantified the ROS concentration after inflammation induction and identified a two-step kinetics of ROS production, which may be attributed to the response of resident immune cells and their further recruitment at the inflammation locus.

摘要

活性氧(ROS)是众多病理情况下的关键调节因子,包括癌症或炎症。它们的作用很复杂,这就说明了需要有能够对其进行定量和时间分辨监测的方法,以便对个体患者的组织进行分析。然而,目前的ROS检测方法并不具备这些特性。在此,我们提出一种基于镧系离子纳米颗粒(GdVO:Eu)成像的新方法,其光致发光由周围的ROS浓度调节。我们在对小鼠耳部进行诱导炎症的局部刺激后,进行皮内注射,然后监测其发光情况。基于这种方法,我们对炎症诱导后的ROS浓度进行了量化,并确定了ROS产生的两步动力学,这可能归因于驻留免疫细胞的反应及其在炎症部位的进一步募集。

相似文献

1
Real-time ROS monitoring with luminescent nanoparticles reveals skin inflammation dynamics.
Biomed Opt Express. 2023 Sep 25;14(10):5392-5404. doi: 10.1364/BOE.501914. eCollection 2023 Oct 1.
4
Multifunctional rare-Earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents.
ACS Nano. 2014 Nov 25;8(11):11126-37. doi: 10.1021/nn504170x. Epub 2014 Oct 20.
5
Rare-earth orthovanadate nanoparticles trigger Ca-dependent eryptosis.
Nanotechnology. 2023 Mar 1;34(20). doi: 10.1088/1361-6528/acbb7f.
6
7
In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012.
Free Radic Biol Med. 2009 Sep 15;47(6):760-6. doi: 10.1016/j.freeradbiomed.2009.06.013. Epub 2009 Jun 17.
8
GdVO:Eu,Bi Nanoparticles as a Contrast Agent for MRI and Luminescence Bioimaging.
ACS Omega. 2019 Sep 20;4(14):15806-15814. doi: 10.1021/acsomega.9b00444. eCollection 2019 Oct 1.

引用本文的文献

本文引用的文献

1
Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS.
Biosens Bioelectron. 2021 May 1;179:113052. doi: 10.1016/j.bios.2021.113052. Epub 2021 Feb 11.
2
ROS networks: designs, aging, Parkinson's disease and precision therapies.
NPJ Syst Biol Appl. 2020 Oct 26;6(1):34. doi: 10.1038/s41540-020-00150-w.
3
Oxidative Stress in Cardiovascular Diseases.
Antioxidants (Basel). 2020 Sep 14;9(9):864. doi: 10.3390/antiox9090864.
6
Mitochondrial dysfunction and oxidative stress in heart disease.
Exp Mol Med. 2019 Dec 19;51(12):1-13. doi: 10.1038/s12276-019-0355-7.
7
Oxidative stress and Parkinson's disease: conflict of oxidant-antioxidant systems.
Neurosci Lett. 2019 Sep 14;709:134296. doi: 10.1016/j.neulet.2019.134296. Epub 2019 May 30.
8
Reactive Oxygen Species in Metabolic and Inflammatory Signaling.
Circ Res. 2018 Mar 16;122(6):877-902. doi: 10.1161/CIRCRESAHA.117.311401.
9
Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues.
Am J Physiol Regul Integr Comp Physiol. 2018 May 1;314(5):R667-R683. doi: 10.1152/ajpregu.00140.2017. Epub 2018 Jan 17.
10
Role of mitochondrial ROS in the brain: from physiology to neurodegeneration.
FEBS Lett. 2018 Mar;592(5):692-702. doi: 10.1002/1873-3468.12964. Epub 2018 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验