Abdesselem M, Pétri N, Kuhner R, Mousseau F, Rouffiac V, Gacoin T, Laplace-Builhé C, Alexandrou A, Bouzigues C I
Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France.
Photon Imaging and Flow Cytometry, CNRS, INSERM, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805 Villejuif Cedex, France.
Biomed Opt Express. 2023 Sep 25;14(10):5392-5404. doi: 10.1364/BOE.501914. eCollection 2023 Oct 1.
Reactive oxygen species (ROS) are key regulators in numerous pathological contexts, including cancer or inflammation. Their role is complex, which justifies the need for methods enabling their quantitative and time-resolved monitoring , in the perspective to profile tissues of individual patients. However, current ROS detection methods do not provide these features. Here, we propose a new method based on the imaging of lanthanide-ion nanoparticles (GdVO:Eu), whose photoluminescence is modulated by the surrounding ROS concentration. We monitored their luminescence after intradermic injection in a mouse ear submitted to an inflammation-inducing topical stimulus. Based on this approach, we quantified the ROS concentration after inflammation induction and identified a two-step kinetics of ROS production, which may be attributed to the response of resident immune cells and their further recruitment at the inflammation locus.
活性氧(ROS)是众多病理情况下的关键调节因子,包括癌症或炎症。它们的作用很复杂,这就说明了需要有能够对其进行定量和时间分辨监测的方法,以便对个体患者的组织进行分析。然而,目前的ROS检测方法并不具备这些特性。在此,我们提出一种基于镧系离子纳米颗粒(GdVO:Eu)成像的新方法,其光致发光由周围的ROS浓度调节。我们在对小鼠耳部进行诱导炎症的局部刺激后,进行皮内注射,然后监测其发光情况。基于这种方法,我们对炎症诱导后的ROS浓度进行了量化,并确定了ROS产生的两步动力学,这可能归因于驻留免疫细胞的反应及其在炎症部位的进一步募集。