Suppr超能文献

利用因果生存森林和G公式对全州电子健康记录数据优化针对侵袭性耐甲氧西林感染的动态抗生素治疗策略

Optimizing Dynamic Antibiotic Treatment Strategies against Invasive Methicillin-Resistant Infections using Causal Survival Forests and G-Formula on Statewide Electronic Health Record Data.

作者信息

Jun Inyoung, Cohen Scott A, Ser Sarah E, Marini Simone, Lucero Robert J, Bian Jiang, Prosperi Mattia

机构信息

Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.

School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Proc Mach Learn Res. 2023 Aug;218:98-115.

Abstract

Developing models for individualized, time-varying treatment optimization from observational data with large variable spaces, e.g., electronic health records (EHR), is problematic because of inherent, complex bias that can change over time. Traditional methods such as the g-formula are robust, but must identify critical subsets of variables due to combinatorial issues. Machine learning approaches such as causal survival forests have fewer constraints and can provide fine-tuned, individualized counterfactual predictions. In this study, we aimed to optimize time-varying antibiotic treatment -identifying treatment heterogeneity and conditional treatment effects- against invasive methicillin-resistant (MRSA) infections, using statewide EHR data collected in Florida, USA. While many previous studies focused on measuring the effects of the first empiric treatment (i.e., usually vancomycin), our study focuses on dynamic sequential treatment changes, comparing possible vancomycin switches with other antibiotics at clinically relevant time points, e.g., after obtaining a bacterial culture and susceptibility testing. Our study population included adult individuals admitted to the hospital with invasive MRSA. We collected demographic, clinical, medication, and laboratory information from the EHR for these patients. Then, we followed three sequential antibiotic choices (i.e., their empiric treatment, subsequent directed treatment, and final sustaining treatment), evaluating 30-day mortality as the outcome. We applied both causal survival forests and g-formula using different clinical intervention policies. We found that switching from vancomycin to another antibiotic improved survival probability, yet there was a benefit from initiating vancomycin compared to not using it at any time point. These findings show consistency with the empiric choice of vancomycin before confirmation of MRSA and shed light on how to manage switches on course. In conclusion, this application of causal machine learning on EHR demonstrates utility in modeling dynamic, heterogeneous treatment effects that cannot be evaluated precisely using randomized clinical trials.

摘要

利用具有大变量空间的观测数据(如电子健康记录(EHR))开发用于个性化、随时间变化的治疗优化模型存在问题,因为存在随时间变化的内在复杂偏差。诸如g公式等传统方法很稳健,但由于组合问题必须识别关键变量子集。诸如因果生存森林等机器学习方法限制较少,能够提供经过微调的个性化反事实预测。在本研究中,我们旨在利用在美国佛罗里达州收集的全州范围的电子健康记录数据,针对耐甲氧西林金黄色葡萄球菌(MRSA)感染优化随时间变化的抗生素治疗——识别治疗异质性和条件治疗效果。虽然之前许多研究专注于测量首次经验性治疗(通常是万古霉素)的效果,但我们的研究聚焦于动态序贯治疗变化,在临床相关时间点(例如在获得细菌培养和药敏试验后)比较可能的万古霉素转换与其他抗生素。我们的研究人群包括因侵袭性MRSA入院的成年个体。我们从这些患者的电子健康记录中收集了人口统计学、临床、用药和实验室信息。然后,我们跟踪了三种序贯抗生素选择(即他们的经验性治疗、随后的针对性治疗和最后的维持治疗),将30天死亡率作为结果进行评估。我们使用不同的临床干预策略应用了因果生存森林和g公式。我们发现从万古霉素转换为另一种抗生素可提高生存概率,但与在任何时间点都不使用万古霉素相比,起始使用万古霉素是有益的。这些发现与在确认MRSA之前经验性选择万古霉素一致,并阐明了如何在治疗过程中进行转换管理。总之,这种因果机器学习在电子健康记录上的应用证明了其在模拟动态、异质性治疗效果方面的效用,而这些效果无法通过随机临床试验精确评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7de9/10584043/de6824ae193b/nihms-1937487-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验