Suppr超能文献

利用旋转定向场对齐的 PVDF-MoS 压电聚合物实现高压电性能,适用于大面积柔性电子。

Reaching High Piezoelectric Performance with Rotating Directional-Field-Aligned PVDF-MoS Piezo-Polymer Applicable for Large-Area Flexible Electronics.

机构信息

School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India.

Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, 110016, India.

出版信息

Macromol Rapid Commun. 2023 Dec;44(24):e2300315. doi: 10.1002/marc.202300315. Epub 2023 Nov 1.

Abstract

Wearable electronics and smart harvesting textile studies require a material system that resists physical stimulation. Such applications require receptive piezo-polymers, and their activation-free preparation that can translate into a continuous large-area film. In this work, it is discussed whether the β-content of piezo-polymer is extended with no use of any activation (i.e. poling), and if the β-content increases, it can be processed over a wide range of surfaces like large-area piezo-film. Such prerequisites within polyvinylidene fluoride-molybdenum disulfide ((PVDF)-MoS ) piezo-polymer are thoroughly experimented here to develop a high-performance piezo-film. A MoS -mediated PVDF piezo-polymer (termed as P -MoS ) is introduced, in which no extra β-enhancement activation step is required after spin coating. Experimental results record β ≧ 80% which allows to harvest the voltage and current in the level of ≈17 V and 1 µA, respectively which satisfies 5 V supply voltage requirement of the current microelectronics, and internet of things (IoT). In addition, the capacitors having different capacities are charged using the developed nanogenerator to check its practical applicability. Therefore, the transition process of P-MoS to aligned P -MoS due to passive interlocking (PiL) through rotating directional field is novel and found to be a principal reason for β-enhancement in fabricated devices.

摘要

可穿戴电子设备和智能采集纺织研究需要一种能够抵抗物理刺激的材料系统。此类应用需要接收式压电器件,且其制备过程无需激活(例如极化),即可转化为连续的大面积薄膜。在这项工作中,我们讨论了是否可以在不使用任何激活(即极化)的情况下扩展压电器件的β含量,并且如果β含量增加,则可以在像大面积压电器件薄膜这样的各种表面上进行处理。在这里,我们深入研究了聚偏二氟乙烯-二硫化钼((PVDF)-MoS )压电器件中的这些前提条件,以开发高性能压电器件薄膜。引入了一种 MoS 介导的 PVDF 压电器件聚合物(称为 P -MoS ),在旋涂后无需额外的β增强激活步骤。实验结果记录的 β ≧ 80% 允许分别以 ≈17 V 和 1 µA 的水平采集电压和电流,从而满足当前微电子学和物联网(IoT)的 5V 电源电压要求。此外,使用开发的纳米发电机对具有不同电容的电容器进行充电,以检查其实际适用性。因此,由于旋转定向场的被动互锁(PiL),P-MoS 向对齐的 P -MoS 的转变过程是新颖的,并且被发现是制造器件中β增强的主要原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验