Suppr超能文献

利用人工智能方法和多种 MRI 特征对急性缺血性脑卒中患者进行再灌注治疗的自动分诊:综述。

Automatic triaging of acute ischemic stroke patients for reperfusion therapies using Artificial Intelligence methods and multiple MRI features: A review.

机构信息

Tunis El Manar University, Higher Institute of Medical Technology of Tunis, Laboratory of Biophysics and Medical Technology, 1006 Tunis, Tunisia.

Tunis El Manar University, Higher Institute of Computer Science, Higher Institute of Management of Tunis, BestMod Laboratory, 1002 Tunis, Tunisia.

出版信息

Clin Imaging. 2023 Dec;104:109992. doi: 10.1016/j.clinimag.2023.109992. Epub 2023 Oct 12.

Abstract

BACKGROUND

The selection of appropriate treatments for Acute Ischemic Stroke (AIS), including Intravenous (IV) tissue plasminogen activator (tPA) and Mechanical thrombectomy, is a critical aspect of clinical decision-making. Timely treatment is essential, with recommended administration of therapies within 4.5 h of symptom onset. However, patients with unknown Time Since Stroke (TSS), are often excluded from thrombolysis, even if the stroke onset exceeds 6 h. Current clinical guidelines propose using multimodal Magnetic Resonance Imaging (MRI) to assess various mismatches.

METHODS

The review explores the significance of automatic methods based on Artificial Intelligence (AI) algorithms that utilize multiple MRI features to identify patients who are most likely to benefit from acute reperfusion therapies. These AI methods include TSS classification and patient selection for therapies in the late time window (>6 h) using MRI images to provide detailed stroke information.

RESULTS

The review discusses the challenges and limitations in the existing mismatch methods, which may lead to missed opportunities for reperfusion therapy. To address these limitations, AI approaches have been developed to enhance accuracy and support clinical decision-making. These AI methods have shown promising results, outperforming traditional mismatch assessments and providing improved sensitivity and specificity in identifying patients eligible for reperfusion therapies.

DISCUSSION

In summary, the integration of AI algorithms utilizing multiple MRI features has the potential to enhance accuracy, improve patient outcomes, and positively influence the decision-making process in AIS. However, ongoing research and collaboration among clinicians, researchers, and technologists are vital to realize the full potential of AI in optimizing stroke management.

摘要

背景

急性缺血性脑卒中(AIS)的治疗选择,包括静脉(IV)组织型纤溶酶原激活剂(tPA)和机械取栓,是临床决策的关键方面。及时治疗至关重要,建议在症状发作后 4.5 小时内给予治疗。然而,对于 TSS 未知的患者,即使中风发作超过 6 小时,也经常被排除在溶栓治疗之外。目前的临床指南建议使用多模态磁共振成像(MRI)来评估各种不匹配。

方法

本综述探讨了基于人工智能(AI)算法的自动方法的重要性,这些方法利用多种 MRI 特征来识别最有可能从急性再灌注治疗中受益的患者。这些 AI 方法包括 TSS 分类和在晚期时间窗(>6 小时)中使用 MRI 图像对治疗进行患者选择,以提供详细的中风信息。

结果

本综述讨论了现有不匹配方法中的挑战和局限性,这些局限性可能导致再灌注治疗机会的丧失。为了解决这些局限性,已经开发了 AI 方法来提高准确性并支持临床决策。这些 AI 方法取得了有希望的结果,在识别有资格接受再灌注治疗的患者方面,其敏感性和特异性均优于传统的不匹配评估。

讨论

总之,利用多种 MRI 特征的 AI 算法的整合有可能提高准确性、改善患者结局,并对 AIS 的决策过程产生积极影响。然而,临床医生、研究人员和技术人员之间的持续研究和合作对于实现 AI 在优化中风管理方面的全部潜力至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验