Suppr超能文献

超越个体:基于潜在协同图学习的改进型电信诈骗检测方法。

Beyond the individual: An improved telecom fraud detection approach based on latent synergy graph learning.

机构信息

National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, Wuhan 430072, China.

National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan 430072, China; School of Cyber Engineering, Xidian University, Xi'an 710071, China.

出版信息

Neural Netw. 2024 Jan;169:20-31. doi: 10.1016/j.neunet.2023.10.019. Epub 2023 Oct 14.

Abstract

The development of telecom technology not only facilitates social interactions but also inevitably provides the breeding ground for telecom fraud crimes. However, telecom fraud detection is a challenging task as fraudsters tend to commit co-fraud and disguise themselves within the mass of benign ones. Previous approaches work by unearthing differences in calling sequential patterns between independent fraudsters, but they may ignore synergic fraud patterns and oversimplify fraudulent behaviors. Fortunately, graph-like data formed by traceable telecom interaction provides opportunities for graph neural network (GNN)-based telecom fraud detection methods. Therefore, we develop a latent synergy graph (LSG) learning-based telecom fraud detector, named LSG-FD, to model both sequential and interactive fraudulent behaviors. Specifically, LSG-FD introduces (1) a multi-view LSG extractor to reconstruct synergy relationship-oriented graphs from the meta-interaction graph based on second-order proximity assumption; (2) an LSTM-based calling behavior encoder to capture the sequential patterns from the perspective of local individuals; (3) a dual-channel based graph learning module to alleviate the disassortativity issue (caused by the camouflages of fraudsters) by incorporating the dual-channel frequency filters and the learnable controller to adaptively aggregate high- and low-frequency information from their neighbors; (4) an imbalance-resistant model trainer to remedy the graph imbalance issue by developing a label-aware sampler. Experiment results on the telecom fraud dataset and another two widely used fraud datasets have verified the effectiveness of our model.

摘要

电信技术的发展不仅促进了社会互动,也为电信诈骗犯罪提供了滋生的土壤。然而,电信诈骗检测是一项具有挑战性的任务,因为诈骗者往往会进行共谋诈骗,并在大量良性通话中伪装自己。以前的方法通过挖掘独立诈骗者之间通话顺序模式的差异来工作,但它们可能忽略了协同诈骗模式,并过于简化了欺诈行为。幸运的是,可追踪的电信交互形成的图状数据为基于图神经网络(GNN)的电信诈骗检测方法提供了机会。因此,我们开发了一种基于潜在协同图(LSG)学习的电信诈骗检测器,命名为 LSG-FD,以建模顺序和交互欺诈行为。具体来说,LSG-FD 引入了(1)一种多视图 LSG 提取器,该提取器基于二阶邻近性假设,从元交互图中重建协同关系导向图;(2)基于 LSTM 的通话行为编码器,从局部个体的角度捕捉顺序模式;(3)基于双通道的图学习模块,通过引入双通道频率滤波器和可学习控制器来缓解非齐次性问题(由诈骗者的伪装引起),自适应地从邻居中聚合高频和低频信息;(4)一个抗不平衡模型训练器,通过开发一个带标签的采样器来弥补图的不平衡问题。在电信诈骗数据集和另外两个广泛使用的诈骗数据集上的实验结果验证了我们模型的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验