Kheiron Medical Technologies, London, UK.
Imperial College London, Department of Computing, London, UK.
Nat Commun. 2023 Oct 19;14(1):6608. doi: 10.1038/s41467-023-42396-y.
Image-based prediction models for disease detection are sensitive to changes in data acquisition such as the replacement of scanner hardware or updates to the image processing software. The resulting differences in image characteristics may lead to drifts in clinically relevant performance metrics which could cause harm in clinical decision making, even for models that generalise in terms of area under the receiver-operating characteristic curve. We propose Unsupervised Prediction Alignment, a generic automatic recalibration method that requires no ground truth annotations and only limited amounts of unlabelled example images from the shifted data distribution. We illustrate the effectiveness of the proposed method to detect and correct performance drift in mammography-based breast cancer screening and on publicly available histopathology data. We show that the proposed method can preserve the expected performance in terms of sensitivity/specificity under various realistic scenarios of image acquisition shift, thus offering an important safeguard for clinical deployment.
基于图像的疾病检测预测模型对数据采集的变化很敏感,例如扫描仪硬件的更换或图像处理软件的更新。图像特征的这些差异可能导致与临床相关的性能指标发生偏差,即使对于在接收者操作特征曲线方面具有泛化能力的模型,这也可能导致临床决策中的危害。我们提出了无监督预测对齐(Unsupervised Prediction Alignment),这是一种通用的自动重新校准方法,不需要地面真实注释,只需要从移位数据分布中获取有限数量的未标记示例图像。我们说明了所提出的方法在基于乳房 X 光摄影的乳腺癌筛查和公开可用的组织病理学数据上检测和纠正性能漂移的有效性。我们表明,所提出的方法可以在各种现实的图像采集偏移场景下保持预期的敏感性/特异性性能,从而为临床部署提供了重要的保障。