Suppr超能文献

寄生于齐口裂腹鱼后肠的内毛圆线虫的能量代谢。

The energy metabolism of Balantidium polyvacuolum inhabiting the hindgut of Xenocypris davidi.

机构信息

State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

BMC Genomics. 2023 Oct 19;24(1):624. doi: 10.1186/s12864-023-09706-6.

Abstract

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.

摘要

厌氧寄生纤毛虫是一类适应缺氧和缺氧环境的纤毛虫,其中,栖息在鲤科鱼类后肠的多泡泡棘尾虫受到的科学关注非常有限,因此其适应消化道微环境的分子机制尚不清楚。在这项研究中,使用透射电子显微镜(TEM)和单细胞转录组分析来揭示多泡泡棘尾虫的代谢情况。观察到淀粉颗粒、内共生细菌和多种形状的多种专门的线粒体相关细胞器(MRO)。这些 MRO 可能已经完全失去了电子传递链(ETC)复合物 I、III、IV 和 V,仅保留了复合物 II 的琥珀酸脱氢酶亚基 A(SDHA)。三羧酸(TCA)循环也不完整。可以推断,缺氧的肠道环境导致了多泡泡棘尾虫的线粒体特化。此外,还鉴定出了碳水化合物活性酶(CAZymes),包括碳水化合物酯酶、具有碳水化合物结合模块的酶、糖苷水解酶和糖基转移酶,这可能构成了多泡泡棘尾虫能够消化碳水化合物和淀粉的证据。这些发现可以提高我们对多泡泡棘尾虫能量代谢和适应机制的认识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验