Suppr超能文献

未选择的路:后悔与宽慰的共同及不同神经关联

The road not taken: Common and distinct neural correlates of regret and relief.

作者信息

Varma Mohith M, Chowdhury Avijit, Yu Rongjun

机构信息

Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China.

Massachusetts General Hospital, Harvard Medical School, Massachusetts, USA.

出版信息

Neuroimage. 2023 Dec 1;283:120413. doi: 10.1016/j.neuroimage.2023.120413. Epub 2023 Oct 17.

Abstract

Humans anticipate and evaluate both obtained and counterfactual outcomes - outcomes that could have been had an alternate decision been taken - and experience associated emotions of regret and relief. Although many functional magnetic resonance imaging (fMRI) studies have examined the neural correlates of these emotions, there is substantial heterogeneity in their results. We conducted coordinate-based ALE and network-based ANM meta-analysis of fMRI studies of experienced regret and relief to examine commonalities and differences in their neural correlates. Regionally, we observed that the experience of both regret and relief was associated with greater activation in the right ventral striatum (VS), which is implicated in tracking reward prediction error. At the network level, regret and relief shared the reward-sensitive mesocorticolimbic network with preferential activation of the medial orbitofrontal cortex (mOFC) for regret processing and medial cingulate cortex (MCC) for relief processing. Our research identified shared and separable brain systems subserving regret and relief experience, which may inform the treatment of regret-related mood disorders.

摘要

人类会对已获得的结果和反事实结果——即如果做出不同决定可能会出现的结果——进行预测和评估,并体验与之相关的遗憾和宽慰情绪。尽管许多功能磁共振成像(fMRI)研究已经探究了这些情绪的神经关联,但它们的结果存在很大的异质性。我们对关于经历过的遗憾和宽慰的fMRI研究进行了基于坐标的激活可能性估计(ALE)和基于网络的全脑网络模型(ANM)元分析,以研究它们神经关联的共性和差异。在区域层面,我们观察到遗憾和宽慰的体验都与右侧腹侧纹状体(VS)的激活增强有关,该区域与追踪奖励预测误差有关。在网络层面,遗憾和宽慰共享奖励敏感的中脑皮质边缘网络,其中内侧眶额皮质(mOFC)在处理遗憾时优先激活,而内侧扣带回皮质(MCC)在处理宽慰时优先激活。我们的研究确定了支持遗憾和宽慰体验的共享和可分离的脑系统,这可能为与遗憾相关的情绪障碍的治疗提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验