Feng Jianan, Chen Hang, Yang Dahai, Hao Junbo, Lin Jie, Jin Peng
Opt Express. 2023 Sep 25;31(20):33113-33122. doi: 10.1364/OE.499840.
Recently, the diffractive deep neural network (DNN) has demonstrated the advantages to achieve large-scale computational tasks in terms of high speed, low power consumption, parallelism, and scalability. A typical DNN with cascaded diffractive elements is designed for monochromatic illumination. Here, we propose a framework to achieve the multi-wavelength DNN (MW-DNN) based on the method of weight coefficients. In training, each wavelength is assigned a specific weighting and their output planes construct the wavelength weighting loss function. The trained MW-DNN can implement the classification of images of handwritten digits at multi-wavelength incident beams. The designed 3-layers MW-DNN achieves a simulation classification accuracy of 83.3%. We designed a 1-layer MW-DNN. The simulation and experiment classification accuracy are 71.4% and 67.5% at RGB wavelengths. Furthermore, the proposed MW-DNN can be extended to intelligent machine vision systems for multi-wavelength and incoherent illumination.
最近,衍射深度神经网络(DNN)已在高速、低功耗、并行性和可扩展性方面展现出完成大规模计算任务的优势。一种具有级联衍射元件的典型DNN是为单色照明设计的。在此,我们提出一种基于权重系数方法来实现多波长DNN(MW-DNN)的框架。在训练过程中,为每个波长分配一个特定权重,并且它们的输出平面构建波长加权损失函数。经过训练的MW-DNN能够在多波长入射光束下实现手写数字图像的分类。所设计的三层MW-DNN实现了83.3%的模拟分类准确率。我们设计了一个单层MW-DNN。在RGB波长下,模拟和实验分类准确率分别为71.4%和67.5%。此外,所提出的MW-DNN可以扩展到用于多波长和非相干照明的智能机器视觉系统。