Bai Bijie, Yang Xilin, Gan Tianyi, Li Jingxi, Mengu Deniz, Jarrahi Mona, Ozcan Aydogan
Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.
Bioengineering Department, University of California, Los Angeles, CA, USA.
Light Sci Appl. 2024 Jul 31;13(1):178. doi: 10.1038/s41377-024-01543-w.
Diffractive deep neural networks (DNNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view. Here, we present a pyramid-structured diffractive optical network design (which we term P-DNN), optimized specifically for unidirectional image magnification and demagnification. In this design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. This P-DNN design creates high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction-achieving the desired unidirectional imaging operation using a much smaller number of diffractive degrees of freedom within the optical processor volume. Furthermore, the P-DNN design maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single wavelength. We also designed a wavelength-multiplexed P-DNN, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. Furthermore, we demonstrate that by cascading multiple unidirectional P-DNN modules, we can achieve higher magnification factors. The efficacy of the P-DNN architecture was also validated experimentally using terahertz illumination, successfully matching our numerical simulations. P-DNN offers a physics-inspired strategy for designing task-specific visual processors.
衍射深度神经网络(DNN)由连续的透射层组成,这些透射层通过监督深度学习进行优化,以全光学方式在输入和输出视场之间执行各种计算任务。在此,我们提出一种金字塔结构的衍射光学网络设计(我们称之为P-DNN),它专门针对单向图像放大和缩小进行了优化。在这种设计中,衍射层沿图像放大或缩小方向呈金字塔状缩放。这种P-DNN设计仅在一个方向上创建高保真的放大或缩小图像,同时抑制相反方向的图像形成——在光学处理器体积内使用少得多的衍射自由度实现所需的单向成像操作。此外,尽管P-DNN设计是在单一波长下训练的,但它在很宽的照明波长范围内都能保持其单向图像放大/缩小功能。我们还设计了一种波长复用的P-DNN,其中一个单向放大镜和一个单向缩小镜在两个不同的照明波长下沿相反方向同时运行。此外,我们证明通过级联多个单向P-DNN模块,可以实现更高的放大倍数。P-DNN架构的有效性也通过太赫兹照明进行了实验验证,成功地与我们的数值模拟结果相匹配。P-DNN为设计特定任务的视觉处理器提供了一种受物理启发的策略。