Suppr超能文献

通过β-断裂实现的自由基终止使利用“烯”还原酶进行光酶催化烯丙基烷基化成为可能。

Radical Termination via β-Scission Enables Photoenzymatic Allylic Alkylation Using "Ene"-Reductases.

作者信息

Laguerre Netgie, Riehl Paul S, Oblinsky Daniel G, Emmanuel Megan A, Black Michael J, Scholes Gregory D, Hyster Todd K

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States.

出版信息

ACS Catal. 2022 Aug 5;12(15):9801-9805. doi: 10.1021/acscatal.2c02294. Epub 2022 Jul 27.

Abstract

Allylations are practical transformations that forge C-C bonds while introducing an alkene for further chemical manipulations. Here, we report a photoenzymatic allylation of -chloroamides with allyl silanes using flavin-dependent 'ene'-reductases (EREDs). An engineered ERED can catalyze annulative allylic alkylation to prepare 5, 6, and 7-membered lactams with high levels of enantioselectivity. Ultrafast transient absorption spectroscopy indicates that radical termination occurs via β-scission of the silyl group to afford a silyl radical, a distinct mechanism by comparison to traditional radical allylations involving allyl silanes. Moreover, this represents an alternative strategy for radical termination using EREDs. This mechanism was applied to intermolecular couplings involving allyl sulfones and silyl enol ethers. Overall, this method highlights the opportunity for EREDs to catalyze radical termination strategies beyond hydrogen atom transfer.

摘要

烯丙基化反应是一类实用的转化反应,它在构建碳-碳键的同时引入烯烃以便进行进一步的化学操作。在此,我们报道了使用黄素依赖性“烯”还原酶(EREDs)催化的氯代酰胺与烯丙基硅烷的光酶促烯丙基化反应。一种经过工程改造的ERED能够催化环化烯丙基烷基化反应,以高对映选择性制备5元、6元和7元内酰胺。超快瞬态吸收光谱表明,自由基终止是通过硅烷基的β-断裂产生硅烷基自由基,这与涉及烯丙基硅烷的传统自由基烯丙基化反应相比是一种独特的机制。此外,这代表了一种使用EREDs进行自由基终止的替代策略。该机制被应用于涉及烯丙基砜和烯醇硅醚的分子间偶联反应。总体而言,该方法凸显了EREDs催化超越氢原子转移的自由基终止策略的可能性。

相似文献

1
Radical Termination via β-Scission Enables Photoenzymatic Allylic Alkylation Using "Ene"-Reductases.
ACS Catal. 2022 Aug 5;12(15):9801-9805. doi: 10.1021/acscatal.2c02294. Epub 2022 Jul 27.
2
From Ground-State to Excited-State Activation Modes: Flavin-Dependent "Ene"-Reductases Catalyzed Non-natural Radical Reactions.
Acc Chem Res. 2024 May 7;57(9):1446-1457. doi: 10.1021/acs.accounts.4c00129. Epub 2024 Apr 11.
3
Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene"-Reductases.
J Am Chem Soc. 2021 Dec 1;143(47):19643-19647. doi: 10.1021/jacs.1c09828. Epub 2021 Nov 16.
4
Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins.
J Am Chem Soc. 2021 Jan 13;143(1):97-102. doi: 10.1021/jacs.0c11462. Epub 2020 Dec 28.
5
Photoenzymatic Hydrogenation of Heteroaromatic Olefins Using 'Ene'-Reductases with Photoredox Catalysts.
Angew Chem Int Ed Engl. 2020 Jun 22;59(26):10484-10488. doi: 10.1002/anie.202003125. Epub 2020 Apr 15.
6
Regiodivergent Radical Termination for Intermolecular Biocatalytic C-C Bond Formation.
J Am Chem Soc. 2024 Feb 21;146(7):5005-5010. doi: 10.1021/jacs.4c00482. Epub 2024 Feb 8.
7
Synthesis of -Quaternary Lactams Using Photoenzymatic Catalysis.
Asian J Org Chem. 2023 Aug;12(8). doi: 10.1002/ajoc.202300274. Epub 2023 Jul 7.
8
An asymmetric sp-sp cross-electrophile coupling using 'ene'-reductases.
Nature. 2022 Oct;610(7931):302-307. doi: 10.1038/s41586-022-05167-1. Epub 2022 Aug 11.
9
Photoenzymatic Catalysis Enables Radical-Mediated Ketone Reduction in Ene-Reductases.
Angew Chem Int Ed Engl. 2019 Jun 24;58(26):8714-8718. doi: 10.1002/anie.201902005. Epub 2019 May 16.
10
Asymmetric Synthesis of α-Chloroamides via Photoenzymatic Hydroalkylation of Olefins.
J Am Chem Soc. 2024 Mar 20;146(11):7191-7197. doi: 10.1021/jacs.4c00927. Epub 2024 Mar 5.

引用本文的文献

1
Trisubstituted Alkenes as Valuable Building Blocks.
Molecules. 2025 Aug 13;30(16):3370. doi: 10.3390/molecules30163370.
2
Transitioning enzyme catalysis towards photocatalysis.
Philos Trans A Math Phys Eng Sci. 2025 May 8;383(2296):20230380. doi: 10.1098/rsta.2023.0380.
4
Threonine Aldolase-Catalyzed Enantioselective α-Alkylation of Amino Acids through Unconventional Photoinduced Radical Initiation.
J Am Chem Soc. 2024 Aug 14;146(32):22476-22484. doi: 10.1021/jacs.4c05949. Epub 2024 Jul 4.
5
From Ground-State to Excited-State Activation Modes: Flavin-Dependent "Ene"-Reductases Catalyzed Non-natural Radical Reactions.
Acc Chem Res. 2024 May 7;57(9):1446-1457. doi: 10.1021/acs.accounts.4c00129. Epub 2024 Apr 11.
6
Regiodivergent Radical Termination for Intermolecular Biocatalytic C-C Bond Formation.
J Am Chem Soc. 2024 Feb 21;146(7):5005-5010. doi: 10.1021/jacs.4c00482. Epub 2024 Feb 8.
7
Non-native Intramolecular Radical Cyclization Catalyzed by a B -Dependent Enzyme.
Angew Chem Int Ed Engl. 2023 Dec 18;62(51):e202312893. doi: 10.1002/anie.202312893. Epub 2023 Nov 14.
8
Using Data Science for Mechanistic Insights and Selectivity Predictions in a Non-Natural Biocatalytic Reaction.
J Am Chem Soc. 2023 Aug 16;145(32):17656-17664. doi: 10.1021/jacs.3c03639. Epub 2023 Aug 2.
9
Photobiocatalytic Strategies for Organic Synthesis.
Chem Rev. 2023 May 10;123(9):5459-5520. doi: 10.1021/acs.chemrev.2c00767. Epub 2023 Apr 28.
10
Asymmetric -Alkylation of Nitroalkanes Enzymatic Photoredox Catalysis.
J Am Chem Soc. 2023 Jan 18;145(2):787-793. doi: 10.1021/jacs.2c12197. Epub 2023 Jan 6.

本文引用的文献

1
Radical philicity and its role in selective organic transformations.
Nat Rev Chem. 2021 Jul;5(7):486-499. doi: 10.1038/s41570-021-00284-3. Epub 2021 Jun 22.
2
Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis.
Chemistry. 2022 Apr 12;28(21):e202103949. doi: 10.1002/chem.202103949. Epub 2022 Mar 3.
3
Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene"-Reductases.
J Am Chem Soc. 2021 Dec 1;143(47):19643-19647. doi: 10.1021/jacs.1c09828. Epub 2021 Nov 16.
4
Engineering a Non-Natural Photoenzyme for Improved Photon Efficiency.
Angew Chem Int Ed Engl. 2022 Jan 10;61(2):e202113842. doi: 10.1002/anie.202113842. Epub 2021 Dec 2.
5
Enzymatic strategies for asymmetric synthesis.
RSC Chem Biol. 2021 Jun 1;2(4):958-989. doi: 10.1039/d1cb00080b. eCollection 2021 Aug 5.
6
Recent trends in biocatalysis.
Chem Soc Rev. 2021 Jul 21;50(14):8003-8049. doi: 10.1039/d0cs01575j. Epub 2021 Jun 18.
7
Ground-State Electron Transfer as an Initiation Mechanism for Biocatalytic C-C Bond Forming Reactions.
J Am Chem Soc. 2021 Jun 30;143(25):9622-9629. doi: 10.1021/jacs.1c04334. Epub 2021 Jun 11.
8
Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins.
J Am Chem Soc. 2021 Jan 13;143(1):97-102. doi: 10.1021/jacs.0c11462. Epub 2020 Dec 28.
9
Photoenzymatic Generation of Unstabilized Alkyl Radicals: An Asymmetric Reductive Cyclization.
J Am Chem Soc. 2020 Sep 16;142(37):15673-15677. doi: 10.1021/jacs.0c07918. Epub 2020 Sep 3.
10
Transition metal-catalysed allylic functionalization reactions involving radicals.
Chem Soc Rev. 2020 Sep 1;49(17):6186-6197. doi: 10.1039/d0cs00262c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验