Suppr超能文献

从基态到激发态激活模式:黄素依赖的“Ene”-还原酶催化的非天然自由基反应。

From Ground-State to Excited-State Activation Modes: Flavin-Dependent "Ene"-Reductases Catalyzed Non-natural Radical Reactions.

机构信息

NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

出版信息

Acc Chem Res. 2024 May 7;57(9):1446-1457. doi: 10.1021/acs.accounts.4c00129. Epub 2024 Apr 11.

Abstract

Enzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMN) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.

摘要

酶是化学合成所需的理想催化剂,因为它们可以被设计为提供无与伦比的效率和选择性。然而,尽管自然界中的许多天然酶可以催化各种反应,但小分子催化剂中存在的许多反应模式在生物界中却没有对应物。通过对小分子催化剂所利用的机制有了详细的了解,我们可以确定具有催化目前自然界中未知反应潜力的现有酶。在过去的八年中,我们小组已经证明,黄素依赖性“ene”-还原酶(ERED)可以催化各种具有无与伦比选择性的自由基介导反应,解决了不对称合成中长期存在的挑战。本报告介绍了我们将 ERED 开发为不对称自由基反应通用催化剂的情况。虽然我们已经开发了多种在蛋白质活性位点内产生自由基的机制,但本报告将重点介绍黄素单核苷酸氢醌(FMN)作为电子转移自由基引发剂的情况。虽然我们最初的机理假设是基于合成有机化学家常用的基于电子转移的自由基引发机制,但最终我们发现了独特于蛋白质活性位点的新兴自由基引发机制。我们将首先介绍分子内反应,并讨论蛋白质如何通过改变卤代烷烃的氧化还原电位以及模板化底物和黄素辅因子之间的电荷转移复合物来激活底物进行还原,从而为反应提供还原。蛋白质工程已被用于修饰这些反应的基本光物理性质,这突出了通过定向进化进一步调整这些系统的机会。本节重点介绍了分子内反应可用的各种偶联伙伴和自由基终止机制。下一节将重点介绍酶模板化的三元电荷转移复合物在辅因子、卤代烷烃和偶联伙伴之间的作用,以控制电子转移以确保仅当两个底物都结合在蛋白质活性位点内时才发生电子转移。我们将重点介绍这种激活模式的合成应用,包括烯烃氢烷基化、碳水化合物羟化、芳基官能化和硝酮烷基化。本节还讨论了蛋白质如何有利于在溶液中难以捉摸的烷基卤化物和硝基烷烃不对称还原偶联的机理步骤。我们知道其他小组进行的几个最近的 ERED 催化的光酶转化。我们将在理解各种底物引发自由基的细微差别方面讨论这些论文的结果。这些生物催化的不对称自由基反应通常补充了最先进的小分子催化反应,使 ERED 成为化学家合成工具包的有价值的补充。此外,用这些系统研究的基本原理可能适用于其他依赖辅因子的蛋白质,为不同类型的酶催化的自由基反应打开了大门。我们预计,本报告将作为指南,并激发人们广泛关注重新利用现有酶来获得新的转化。

相似文献

1
From Ground-State to Excited-State Activation Modes: Flavin-Dependent "Ene"-Reductases Catalyzed Non-natural Radical Reactions.
Acc Chem Res. 2024 May 7;57(9):1446-1457. doi: 10.1021/acs.accounts.4c00129. Epub 2024 Apr 11.
2
Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent 'ene'-reductases.
Nat Chem. 2020 Jan;12(1):71-75. doi: 10.1038/s41557-019-0370-2. Epub 2019 Dec 2.
3
Ene-Reductases-Catalyzed Non-Natural Reactions.
Chemistry. 2025 May;31(25):e202500539. doi: 10.1002/chem.202500539. Epub 2025 Mar 30.
4
An asymmetric sp-sp cross-electrophile coupling using 'ene'-reductases.
Nature. 2022 Oct;610(7931):302-307. doi: 10.1038/s41586-022-05167-1. Epub 2022 Aug 11.
5
Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene"-Reductases.
J Am Chem Soc. 2021 Dec 1;143(47):19643-19647. doi: 10.1021/jacs.1c09828. Epub 2021 Nov 16.
6
Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins.
J Am Chem Soc. 2021 Jan 13;143(1):97-102. doi: 10.1021/jacs.0c11462. Epub 2020 Dec 28.
7
Ground-State Electron Transfer as an Initiation Mechanism for Biocatalytic C-C Bond Forming Reactions.
J Am Chem Soc. 2021 Jun 30;143(25):9622-9629. doi: 10.1021/jacs.1c04334. Epub 2021 Jun 11.
8
Ground-state flavin-dependent enzymes catalyzed enantioselective radical trifluoromethylation.
Nat Commun. 2025 Jan 31;16(1):1225. doi: 10.1038/s41467-025-56437-1.
9
Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis.
Acc Chem Res. 2024 Aug 6;57(15):2067-2079. doi: 10.1021/acs.accounts.4c00172. Epub 2024 Jul 22.
10
Photoenzymatic Generation of Unstabilized Alkyl Radicals: An Asymmetric Reductive Cyclization.
J Am Chem Soc. 2020 Sep 16;142(37):15673-15677. doi: 10.1021/jacs.0c07918. Epub 2020 Sep 3.

引用本文的文献

1
Light-Driven Enzyme Catalysis: Ultrafast Mechanisms and Biochemical Implications.
Biochemistry. 2025 Jun 17;64(12):2491-2505. doi: 10.1021/acs.biochem.5c00039. Epub 2025 May 29.
4
Shining light on flavin mononucleotide.
Nat Chem. 2025 May;17(5):778. doi: 10.1038/s41557-025-01809-9.
5
NHC-Mediated Radical Acylation Catalyzed by Thiamine- and Flavin-Dependent Enzymes.
J Am Chem Soc. 2025 Apr 30;147(17):14837-14844. doi: 10.1021/jacs.5c04484. Epub 2025 Apr 15.
6
Designing Enzymatic Reactivity with an Expanded Palette.
Chembiochem. 2025 Jun 3;26(11):e202500076. doi: 10.1002/cbic.202500076. Epub 2025 Apr 4.
7
Ground-state flavin-dependent enzymes catalyzed enantioselective radical trifluoromethylation.
Nat Commun. 2025 Jan 31;16(1):1225. doi: 10.1038/s41467-025-56437-1.
8
Protein-Driven Electron-Transfer Process in a Fatty Acid Photodecarboxylase.
JACS Au. 2024 Dec 18;5(1):158-168. doi: 10.1021/jacsau.4c00853. eCollection 2025 Jan 27.
9
Biocatalytic Generation of Trifluoromethyl Radicals by Nonheme Iron Enzymes for Enantioselective Alkene Difunctionalization.
J Am Chem Soc. 2024 Dec 18;146(50):34878-34886. doi: 10.1021/jacs.4c14310. Epub 2024 Dec 5.
10
Creating novel metabolic pathways by protein engineering for bioproduction.
Trends Biotechnol. 2025 May;43(5):1094-1103. doi: 10.1016/j.tibtech.2024.10.017. Epub 2024 Dec 3.

本文引用的文献

1
Engineering non-haem iron enzymes for enantioselective C(sp3)-F bond formation via radical fluorine transfer.
Nat Synth. 2024 Aug;3(8):958-966. doi: 10.1038/s44160-024-00507-7. Epub 2024 Mar 28.
2
Photoenzymatic Enantioselective Intermolecular Radical Hydroamination.
Nat Catal. 2023 Aug;6(8):687-694. doi: 10.1038/s41929-023-00994-5. Epub 2023 Jul 31.
3
Single-Electron Oxidation-Initiated Enantioselective Hydrosulfonylation of Olefins Enabled by Photoenzymatic Catalysis.
J Am Chem Soc. 2024 Jan 31;146(4):2748-2756. doi: 10.1021/jacs.3c12513. Epub 2024 Jan 12.
4
A light-driven enzymatic enantioselective radical acylation.
Nature. 2024 Jan;625(7993):74-78. doi: 10.1038/s41586-023-06822-x. Epub 2023 Dec 18.
5
From nature to industry: Harnessing enzymes for biocatalysis.
Science. 2023 Nov 24;382(6673):eadh8615. doi: 10.1126/science.adh8615.
6
Remote stereocontrol with azaarenes via enzymatic hydrogen atom transfer.
Nat Chem. 2024 Feb;16(2):277-284. doi: 10.1038/s41557-023-01368-x. Epub 2023 Nov 16.
7
Photoenzymatic Enantioselective Synthesis of Oxygen-Containing Benzo-Fused Heterocycles.
Angew Chem Int Ed Engl. 2023 Dec 11;62(50):e202311762. doi: 10.1002/anie.202311762. Epub 2023 Nov 9.
8
Radical Termination via β-Scission Enables Photoenzymatic Allylic Alkylation Using "Ene"-Reductases.
ACS Catal. 2022 Aug 5;12(15):9801-9805. doi: 10.1021/acscatal.2c02294. Epub 2022 Jul 27.
10
Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis.
Science. 2023 Jul 28;381(6656):444-451. doi: 10.1126/science.adg2420. Epub 2023 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验