Suppr超能文献

神经肿瘤学中影像学反应标准的演变与实施

Evolution and implementation of radiographic response criteria in neuro-oncology.

作者信息

Ramakrishnan Divya, von Reppert Marc, Krycia Mark, Sala Matthew, Mueller Sabine, Aneja Sanjay, Nabavizadeh Ali, Galldiks Norbert, Lohmann Philipp, Raji Cyrus, Ikuta Ichiro, Memon Fatima, Weinberg Brent D, Aboian Mariam S

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.

Tulane University School of Medicine, New Orleans, Louisiana, USA.

出版信息

Neurooncol Adv. 2023 Sep 13;5(1):vdad118. doi: 10.1093/noajnl/vdad118. eCollection 2023 Jan-Dec.

Abstract

Radiographic response assessment in neuro-oncology is critical in clinical practice and trials. Conventional criteria, such as the MacDonald and response assessment in neuro-oncology (RANO) criteria, rely on bidimensional (2D) measurements of a single tumor cross-section. Although RANO criteria are established for response assessment in clinical trials, there is a critical need to address the complexity of brain tumor treatment response with multiple new approaches being proposed. These include volumetric analysis of tumor compartments, structured MRI reporting systems like the Brain Tumor Reporting and Data System, and standardized approaches to advanced imaging techniques to distinguish tumor response from treatment effects. In this review, we discuss the strengths and limitations of different neuro-oncology response criteria and summarize current research findings on the role of novel response methods in neuro-oncology clinical trials and practice.

摘要

神经肿瘤学中的影像学反应评估在临床实践和试验中至关重要。传统标准,如麦克唐纳标准和神经肿瘤学反应评估(RANO)标准,依赖于对单个肿瘤横截面的二维(2D)测量。尽管RANO标准已在临床试验中确立用于反应评估,但由于多种新方法的提出,迫切需要应对脑肿瘤治疗反应的复杂性。这些方法包括肿瘤区域的体积分析、像脑肿瘤报告和数据系统这样的结构化MRI报告系统,以及区分肿瘤反应与治疗效果的先进成像技术的标准化方法。在本综述中,我们讨论了不同神经肿瘤学反应标准的优缺点,并总结了关于新型反应方法在神经肿瘤学临床试验和实践中的作用的当前研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d261/10584081/86e2eec14141/vdad118_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验