Suppr超能文献

PNOC-001小儿低级别胶质瘤临床试验中容积法与基于二维的反应评估方法的比较

Comparison of volumetric and 2D-based response methods in the PNOC-001 pediatric low-grade glioma clinical trial.

作者信息

von Reppert Marc, Ramakrishnan Divya, Brüningk Sarah C, Memon Fatima, Abi Fadel Sandra, Maleki Nazanin, Bahar Ryan, Avesta Arman E, Jekel Leon, Sala Matthew, Lost Jan, Tillmanns Niklas, Kaur Manpreet, Aneja Sanjay, Fathi Kazerooni Anahita, Nabavizadeh Ali, Lin MingDe, Hoffmann Karl-Titus, Bousabarah Khaled, Swanson Kristin R, Haas-Kogan Daphne, Mueller Sabine, Aboian Mariam S

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.

Department of Neuroradiology, Leipzig University Hospital, Leipzig, Germany.

出版信息

Neurooncol Adv. 2023 Dec 27;6(1):vdad172. doi: 10.1093/noajnl/vdad172. eCollection 2024 Jan-Dec.

Abstract

BACKGROUND

Although response in pediatric low-grade glioma (pLGG) includes volumetric assessment, more simplified 2D-based methods are often used in clinical trials. The study's purpose was to compare volumetric to 2D methods.

METHODS

An expert neuroradiologist performed solid and whole tumor (including cyst and edema) volumetric measurements on MR images using a PACS-based manual segmentation tool in 43 pLGG participants (213 total follow-up images) from the Pacific Pediatric Neuro-Oncology Consortium (PNOC-001) trial. Classification based on changes in volumetric and 2D measurements of solid tumor were compared to neuroradiologist visual response assessment using the Brain Tumor Reporting and Data System (BT-RADS) criteria for a subset of 65 images using receiver operating characteristic (ROC) analysis. Longitudinal modeling of solid tumor volume was used to predict BT-RADS classification in 54 of the 65 images.

RESULTS

There was a significant difference in ROC area under the curve between 3D solid tumor volume and 2D area (0.96 vs 0.78, = .005) and between 3D solid and 3D whole volume (0.96 vs 0.84, = .006) when classifying BT-RADS progressive disease (PD). Thresholds of 15-25% increase in 3D solid tumor volume had an 80% sensitivity in classifying BT-RADS PD included in their 95% confidence intervals. The longitudinal model of solid volume response had a sensitivity of 82% and a positive predictive value of 67% for detecting BT-RADS PD.

CONCLUSIONS

Volumetric analysis of solid tumor was significantly better than 2D measurements in classifying tumor progression as determined by BT-RADS criteria and will enable more comprehensive clinical management.

摘要

背景

尽管小儿低级别胶质瘤(pLGG)的疗效评估包括体积评估,但在临床试验中,更简化的基于二维的方法经常被使用。本研究的目的是比较体积法和二维法。

方法

一位神经放射学专家使用基于PACS的手动分割工具,对来自太平洋儿科神经肿瘤学联盟(PNOC - 001)试验的43名pLGG参与者(共213张随访图像)的磁共振图像进行实体肿瘤和全肿瘤(包括囊肿和水肿)的体积测量。使用受试者操作特征(ROC)分析,将基于实体肿瘤体积和二维测量变化的分类与神经放射学专家使用脑肿瘤报告和数据系统(BT - RADS)标准对65张图像子集的视觉反应评估进行比较。在65张图像中的54张中,使用实体肿瘤体积的纵向模型来预测BT - RADS分类。

结果

在将BT - RADS进展性疾病(PD)分类时,三维实体肿瘤体积与二维面积之间(曲线下面积分别为0.96和0.78,P = 0.005)以及三维实体体积与三维总体积之间(0.96和0.84,P = 0.006)的ROC曲线下面积存在显著差异。三维实体肿瘤体积增加15% - 25%的阈值在对BT - RADS PD进行分类时,其95%置信区间内的灵敏度为80%。实体体积反应的纵向模型检测BT - RADS PD的灵敏度为82%,阳性预测值为67%。

结论

根据BT - RADS标准,实体肿瘤的体积分析在分类肿瘤进展方面明显优于二维测量,将有助于更全面的临床管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de73/10785766/3de4de6b77d8/vdad172_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验