Suppr超能文献

评估具有改进标准的蛋白质组学插补方法。

Evaluating Proteomics Imputation Methods with Improved Criteria.

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States.

Talus Biosciences, Seattle, Washington 98112, United States.

出版信息

J Proteome Res. 2023 Nov 3;22(11):3427-3438. doi: 10.1021/acs.jproteome.3c00205. Epub 2023 Oct 20.

Abstract

Quantitative measurements produced by tandem mass spectrometry proteomics experiments typically contain a large proportion of missing values. Missing values hinder reproducibility, reduce statistical power, and make it difficult to compare across samples or experiments. Although many methods exist for imputing missing values, in practice, the most commonly used methods are among the worst performing. Furthermore, previous benchmarking studies have focused on relatively simple measurements of error such as the mean-squared error between imputed and held-out values. Here we evaluate the performance of commonly used imputation methods using three practical, "downstream-centric" criteria. These criteria measure the ability to identify differentially expressed peptides, generate new quantitative peptides, and improve the peptide lower limit of quantification. Our evaluation comprises several experiment types and acquisition strategies, including data-dependent and data-independent acquisition. We find that imputation does not necessarily improve the ability to identify differentially expressed peptides but that it can identify new quantitative peptides and improve the peptide lower limit of quantification. We find that MissForest is generally the best performing method per our downstream-centric criteria. We also argue that existing imputation methods do not properly account for the variance of peptide quantifications and highlight the need for methods that do.

摘要

串联质谱蛋白质组学实验产生的定量测量值通常包含很大比例的缺失值。缺失值会阻碍可重复性,降低统计能力,并使得跨样本或实验进行比较变得困难。尽管存在许多用于插补缺失值的方法,但在实践中,最常用的方法是性能最差的方法之一。此外,以前的基准研究主要集中在相对简单的错误测量上,例如插补值和保留值之间的均方误差。在这里,我们使用三个实际的、“下游中心”标准来评估常用插补方法的性能。这些标准衡量识别差异表达肽、生成新定量肽和提高肽定量下限的能力。我们的评估包括几种实验类型和采集策略,包括数据依赖和数据独立采集。我们发现,插补不一定能提高识别差异表达肽的能力,但它可以识别新的定量肽并提高肽定量下限。我们发现,根据我们的下游中心标准,MissForest 通常是性能最好的方法。我们还认为,现有的插补方法没有正确考虑肽定量的方差,并强调需要开发能够正确考虑这种方差的方法。

相似文献

1
Evaluating Proteomics Imputation Methods with Improved Criteria.评估具有改进标准的蛋白质组学插补方法。
J Proteome Res. 2023 Nov 3;22(11):3427-3438. doi: 10.1021/acs.jproteome.3c00205. Epub 2023 Oct 20.

引用本文的文献

本文引用的文献

2
LFQ-Based Peptide and Protein Intensity Differential Expression Analysis.基于 LFQ 的肽段和蛋白质相对强度差异表达分析。
J Proteome Res. 2023 Jun 2;22(6):2114-2123. doi: 10.1021/acs.jproteome.2c00812. Epub 2023 May 23.
6
: A Comprehensive -Package for Proteomics Differential Expression Analysis.蛋白质组学差异表达分析的综合套餐。
J Proteome Res. 2023 Apr 7;22(4):1092-1104. doi: 10.1021/acs.jproteome.2c00441. Epub 2023 Mar 20.
7
Challenges and Opportunities for Single-cell Computational Proteomics.单细胞计算蛋白质组学面临的挑战与机遇。
Mol Cell Proteomics. 2023 Apr;22(4):100518. doi: 10.1016/j.mcpro.2023.100518. Epub 2023 Feb 23.
10
Effect of imputation on gene network reconstruction from single-cell RNA-seq data.插补对单细胞RNA测序数据基因网络重建的影响。
Patterns (N Y). 2021 Dec 22;3(2):100414. doi: 10.1016/j.patter.2021.100414. eCollection 2022 Feb 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验