Suppr超能文献

用于动态F正电子发射断层显像的Q.Clear重建优化

Optimization of Q.Clear reconstruction for dynamic F PET imaging.

作者信息

Lysvik Elisabeth Kirkeby, Mikalsen Lars Tore Gyland, Rootwelt-Revheim Mona-Elisabeth, Emblem Kyrre Eeg, Hjørnevik Trine

机构信息

Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Building 20, Gaustad Sykehus, Sognsvannveien 21, 0372, Oslo, Norway.

Institute of Clinical Medicine, University of Oslo, Oslo, Norway.

出版信息

EJNMMI Phys. 2023 Oct 20;10(1):65. doi: 10.1186/s40658-023-00584-1.

Abstract

BACKGROUND

Q.Clear, a Bayesian penalized likelihood reconstruction algorithm, has shown high potential in improving quantitation accuracy in PET systems. The Q.Clear algorithm controls noise during the iterative reconstruction through a β penalization factor. This study aimed to determine the optimal β-factor for accurate quantitation of dynamic PET scans.

METHODS

A Flangeless Esser PET Phantom with eight hollow spheres (4-25 mm) was scanned on a GE Discovery MI PET/CT system. Data were reconstructed into five sets of variable acquisition times using Q.Clear with 18 different β-factors ranging from 100 to 3500. The recovery coefficient (RC), coefficient of variation (CV) and root-mean-square error (RMSE) were evaluated for the phantom data. Two male patients with recurrent glioblastoma were scanned on the same scanner using F-PSMA-1007. Using an irreversible two-tissue compartment model, the area under curve (AUC) and the net influx rate K were calculated to assess the impact of different β-factors on the pharmacokinetic analysis of clinical PET brain data.

RESULTS

In general, RC and CV decreased with increasing β-factor in the phantom data. For small spheres (< 10 mm), and in particular for short acquisition times, low β-factors resulted in high variability and an overestimation of measured activity. Increasing the β-factor improves the variability, however at a cost of underestimating the measured activity. For the clinical data, AUC decreased and K increased with increased β-factor; a change in β-factor from 300 to 1000 resulted in a 25.5% increase in the K.

CONCLUSION

In a complex dynamic dataset with variable acquisition times, the optimal β-factor provides a balance between accuracy and precision. Based on our results, we suggest a β-factor of 300-500 for quantitation of small structures with dynamic PET imaging, while large structures may benefit from higher β-factors.

TRIAL REGISTRATION

Clinicaltrials.gov, NCT03951142. Registered 5 October 2019, https://clinicaltrials.gov/ct2/show/NCT03951142 . EudraCT no 2018-003229-27. Registered 26 February 2019, https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-003229-27/NO .

摘要

背景

Q.Clear是一种贝叶斯惩罚似然重建算法,在提高PET系统定量准确性方面显示出巨大潜力。Q.Clear算法通过一个β惩罚因子在迭代重建过程中控制噪声。本研究旨在确定用于动态PET扫描准确定量的最佳β因子。

方法

在GE Discovery MI PET/CT系统上扫描带有八个空心球体(4 - 25毫米)的无框埃塞尔PET体模。使用Q.Clear将数据重建为五组不同采集时间的数据,β因子有18种,范围从100到3500。对体模数据评估恢复系数(RC)、变异系数(CV)和均方根误差(RMSE)。两名复发性胶质母细胞瘤男性患者在同一台扫描仪上使用F - PSMA - 1007进行扫描。使用不可逆双组织房室模型计算曲线下面积(AUC)和净流入率K,以评估不同β因子对临床PET脑数据药代动力学分析的影响。

结果

总体而言,体模数据中RC和CV随β因子增加而降低。对于小球体(< 10毫米),特别是采集时间较短时,低β因子导致高变异性和测量活性的高估。增加β因子可改善变异性,但代价是低估测量活性。对于临床数据,AUC随β因子增加而降低,K随β因子增加而增加;β因子从300变为1000导致K增加25.5%。

结论

在具有不同采集时间的复杂动态数据集中,最佳β因子在准确性和精密度之间提供平衡。根据我们的结果,我们建议在动态PET成像中对小结构进行定量时使用300 - 500的β因子,而大结构可能受益于更高的β因子。

试验注册

Clinicaltrials.gov,NCT03951142。于2019年10月5日注册,https://clinicaltrials.gov/ct2/show/NCT03951142 。EudraCT编号2018 - 003229 - 27。于2019年2月26日注册,https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-003229-27/NO

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8de4/10589167/fc01d1e2310b/40658_2023_584_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验