Suppr超能文献

一锅法合成由自组装肽和聚乙二醇完全合成材料组成的坚韧且具有细胞黏附性的双重网络水凝胶。

One-Pot Approach to Synthesize Tough and Cell Adhesive Double-Network Hydrogels Consisting of Fully Synthetic Materials of Self-Assembling Peptide and Poly(ethylene glycol).

机构信息

Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

出版信息

ACS Appl Bio Mater. 2023 Dec 18;6(12):5282-5289. doi: 10.1021/acsabm.3c00562. Epub 2023 Oct 20.

Abstract

Hydrogels with a double network (DN) structure are compelling biomaterials, holding potential for use as artificial extracellular matrices. Generally, the DN approach imparts hydrogels with high mechanical strength and cell-adhesive properties. However, achieving this often demands a complex multistep process involving potentially hazardous free-radical polymerization, which can result in toxicity. This limits their broad biological applications. In this work, we introduce a straightforward yet biocompatible method to fabricate tough and cell-adhesive DN hydrogels using entirely synthetic materials: the self-assembling peptide (RADA16) and poly(ethylene glycol) (PEG). An in situ mixing of these components leads to the sequential formation of DN hydrogels─first through the self-assembly of the RADA16 peptide and then via chemical cross-linking between PEG molecules. Hydrogels produced this way exhibited up to a 10-fold increase in fracture energy, and cells seeded on their surfaces showcased good attachment. Our design underscores the efficacy of the DN approach and the promising applications of peptides in tissue engineering.

摘要

具有双网络(DN)结构的水凝胶是一种极具吸引力的生物材料,有望用作人工细胞外基质。通常,DN 方法赋予水凝胶高机械强度和细胞黏附特性。然而,实现这一目标通常需要涉及潜在危险的自由基聚合的复杂多步过程,这可能导致毒性。这限制了它们在广泛的生物学应用中的应用。在这项工作中,我们使用完全合成的材料介绍了一种简单但生物相容的方法来制造坚韧且具有细胞黏附性的 DN 水凝胶:自组装肽(RADA16)和聚乙二醇(PEG)。这些成分的原位混合导致 DN 水凝胶的顺序形成 - 首先通过 RADA16 肽的自组装,然后通过 PEG 分子之间的化学交联。以这种方式制备的水凝胶的断裂能增加了 10 倍,在其表面接种的细胞表现出良好的附着性。我们的设计强调了 DN 方法的有效性以及肽在组织工程中的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验